
RLBOA: A Modular Reinforcement Learning Framework for
Autonomous Negotiating Agents

Jasper Bakker∗
University of Amsterdam

Amsterdam, The Netherlands
jcsbakker@gmail.com

Aron Hammond∗
University of Amsterdam

Amsterdam, The Netherlands
a.o.m.hammond@gmail.com

Daan Bloembergen
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

d.bloembergen@cwi.nl

Tim Baarslag
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

t.baarslag@cwi.nl

ABSTRACT
Negotiation is a complex problem, in which the variety of settings
and opponents that may be encountered prohibits the use of a sin-
gle predefined negotiation strategy. Hence the agent should be able
to learn such a strategy autonomously. To this end we propose
RLBOA, a modular framework that facilitates the creation of au-
tonomous negotiation agents using reinforcement learning. The
framework allows for the creation of agents that are capable of
negotiating effectively in many different scenarios. To be able to
cope with the large size of the state and action spaces and diversity
of settings, we leverage the modular BOA-framework. This decou-
ples the negotiation strategy into a Bidding strategy, an Opponent
model and an Acceptance condition. Furthermore, we map the mul-
tidimensional contract space onto the utility axis which enables a
compact and generic state and action description. We demonstrate
the value of the RLBOA framework by implementing an agent that
uses tabular Q-learning on the compressed state and action space to
learn a bidding strategy. We show that the resulting agent is able to
learn well-performing bidding strategies in a range of negotiation
settings and is able to generalize across opponents and domains.

KEYWORDS
Bargaining and negotiation; Learning agent-to-agent interactions
(negotiation, trust, coordination); Reinforcement Learning
ACM Reference Format:
Jasper Bakker, Aron Hammond, Daan Bloembergen, and Tim Baarslag. 2019.
RLBOA: A Modular Reinforcement Learning Framework for Autonomous
Negotiating Agents. In Proc. of the 18th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2019), Montreal, Canada,
May 13–17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION
Negotiation is omnipresent in today’s society. From buying a car
or produce on the market, to negotiations that impact people on a
world scale, such as global carbon emission agreements. Automa-
tion of negotiation can offer a number of benefits compared to
∗These authors contributed equally to this paper.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

non-computerized negotiation. Autonomous negotiators can sys-
tematically consider all possible outcomes in a fraction of the time
and for a fraction of the cost [10]. Negotiating agents can thus
reduce the time and effort needed to reach agreements and simul-
taneously increase the chance of better, win-win, deals [5, 16].

Automating negotiation is a complex problem, with many open
challenges left to be tackled that form important obstacles for a
broader adoption of negotiating agents in real world settings [5].
Firstly, there are many different negotiation settings, and an agent
that performs well in one domain or against one opponent may
be useless in another setting. Secondly, when considering multi-
issue negotiations, the state space increases exponentially with
the number of issues. A general learning agent could help with
these challenges by scaling the agent both in breadth (by handling
multiple domains and opponents) and in depth (by handling large
outcome spaces). Against this background, we propose a modular
reinforcement learning (RL) framework to develop general negoti-
ation agents. Reinforcement learning optimization methods have
shown great learning ability in many different environments [19],
against many different opponents [22, 23] and in very large state
spaces [19, 22, 23].

Formulating a generic reinforcement learning framework for
multi-issue negotiation is not a straightforward task. A major chal-
lenge is allowing for generic state and action spaces that can be
represented in a compact manner and at the same time be defined
arbitrarily by an agent designer to accommodate different negotia-
tion settings. To facilitate the description of the states and actions
we distinguish three major components involved in the strategy of
the negotiating agent [3]: a bidding strategy which is used to decide
what to offer, an opponent model that estimates the opponent’s
utility of different offers, and an acceptance strategy that is used to
decide whether to propose the next bid or to accept that of the op-
ponent. Through these components, the specifics of negotiation can
be abstracted away by providing an interface for any reinforcement
learning algorithm in order to learn a negotiation strategy.

The contributions of this paper to the existing body of work in
this domain are threefold:

• We provide the RLBOA-framework: a universal Reinforce-
ment Learning interface wherein non-repeated multi-issue
alternating offers negotiations can be applied in a scalable
way;

• We show a proof of concept by creating an agent from the
framework. We show that the resulting RLBOA-agent can
indeed learn generic negotiation strategies that are proficient
across domains as well as opponents;
• Finally, the RLBOA-framework is implemented in the open-
source negotiation software Genius [15], aiding further re-
search into the topic.

2 RELATEDWORK
This work is at the intersection of the domains of autonomous
negotiation and reinforcement learning. In this section we discuss
work done in both fields separately and combined.

2.1 Autonomous Negotiation
Research into autonomous negotiation can be roughly classified
into two categories [17]. Theoretical approaches take methods from
economics and game theory to classify distinct forms of negotiation
and come to conclusions about optimal strategies and protocols.
Computational approaches, on the other hand, mainly focus on
developing and evaluating strategies in realistic tasks. Different
computational methods have been used to increase the performance
of autonomously negotiating agents and their decision making
model; for example, Bayesian learning [13, 31], utility-graphs for
non-linear preferences [20], Q-learning [7, 8, 28], and evolutionary
computation [18]. In this paper we will focus on the agent decision
making model, or negotiation strategy.

The design of a negotiation agent can be systematically analyzed
by its components in the BOA framework [3]. The BOA framework
decouples the complete negotiation strategy into a Bidding strategy
that decides what to offer, an Opponent model that models the
opponent’s preferences by estimating the utility of different offers,
and an Acceptance strategy which is used to decide whether to
propose the next bid, to accept the opponent’s bid, or to end the
negotiation. Later formulations of the BOA framework also define
an opponent model strategy that specifies how the bidding strategy
uses the information in the opponent model [12].

2.2 Reinforcement Learning
Reinforcement learning (RL) is a goal oriented optimization tech-
nique that learns a mapping from states to actions, called a policy,
to control the behavior of an agent [25]. This is achieved by trial-
and-error during repeated interaction with an environment. The
environment is everything that is out of the immediate control of
the agent [25]. Formally, the environment is defined as a Markov
Decision Process (MDP) consisting of a set of states, S , their as-
sociated actions As , transition probabilities P(st+1 |st ,at), rewards
r (st ,at , st+1) and a discount factor γ . The transition probability
is the probability of arriving in state st+1 given the current state
st and the performed action at . The reward is a signal from the
environment signifying the value of performing a specific action
in a state. In practice however, the environment does not always
fit such a description [19]. Although typical theoretical guarantees
on convergence no longer hold in such cases [25], studies still find
convergence empirically under various conditions [6, 26, 28].

RL has shown great promise in complex problems. For example,
Tesauro’s TD-Gammon learned to play the game of Backgammon

[26]. Atari video games, which have an infinite state space, were
learned to be played on a super-human level [19]. In addition, the
World Champion in the game of Go was beaten by an RL agent
decades before it was conceived to be possible for an AI system to
accomplish such a feat [22, 23]. Finally, RL agents have the ability
to gain a real understanding of the games they play and come up
with creative new strategies and insights [23].

2.3 RL in Autonomous Negotiation Domains
Several studies have looked at the application of RL to automated ne-
gotiation. However, either the used methods or the focus within the
automated negotiation domain always differed from ours. Tessauro
and Kephart [28] examined three different oligopolistic economical
settings with two competing sellers that do not have a deadline.
In each setting, collusion would be the optimal strategy so as to
avoid a price war. They found that against a deterministic oppo-
nent, their Q-learning approach was always able to find the optimal
behavior. However, they also found that against opponents that
are adaptive, the optimal strategy is much harder to learn since it
is non-stationary and becomes history dependent. Further work
also looked at the effects of different function approximators in the
same scenario and found that regression trees were superior to neu-
ral networks, but that Q-tables worked better than both function
approximators for small domains [24, 27]. In our implementation,
we also use Q-learning as an optimization method, but where they
focus on just three different domains, we train and evaluate the
RLBOA-agent on a broader range of scenarios. Moreover, their
agents, as opposed to the agents in our setting, have near perfect
information. This makes it a two-player perfect-information deter-
ministic game, a game very similar in spirit to chess.

Another important consideration is the work of Lewis et al. [14]
who showed that applying reinforcement learning could improve
the performance of a pre-trained Neural Network that was trained
on human-human negotiations. They used a multi-issue bargaining
set-up, but their focus was on the natural language side of nego-
tiation, which can be used to increase the applicability of human-
machine negotiation. Rodriguez-Fernandez et al. demonstrated the
effectiveness of a Q-learning strategy for a decision support system
for the Energy Market [21]. Their agent was able to assist in deter-
mining the context of the negotiation during the pre-negotiation
phase. Where their work focuses on decision support systems, our
research is in the field of completely autonomous negotiation.

3 NEGOTIATION MODEL
The negotiation proceeds through the stacked alternating offers
protocol, in which the negotiation consists of rounds of consecutive
turns. Each turn one party can either make an offer, accept, or
leave the negotiation [1]. It is not possible for agents to recall an
outstanding offer. The negotiation ends if the parties find a joint
agreement or a deadline is reached. The deadline is measured in
the number of rounds t . Negotiations are non-repeated, meaning
that the actions an agent takes during one negotiation session will
not impact actions the opponent takes in subsequent sessions.

The issues are the objects of the negotiation and, depending
on their number, define either a single- or multi-issue negotiation.
A possible outcome is an assignment of an option for each issue.

Figure 1: A schematic overview of the RLBOA-framework (within the dashed box), the BOA framework (blue) with the inte-
grated RL component (green), the mapping onto the utility axis (purple), and the greater negotiation setting including the
opponent (red) and negotiation objects (yellow). The arrows represent the information flow within the framework.

The Cartesian product of negotiation issues is called the outcome
space and is formally denoted as Ω = {ω1, . . . ,ωN } where ωi is a
possible outcome and N is the total number of possible outcomes.
For example, consider a buyer and a seller of a customizable laptop,
where the issues are the components of the laptop (e.g., RAM, CPU,
GPU, screen size, etc.) and the items are different options for each
issue (e.g., a 13, 15 or 17 inch screen). The outcome space consists
of all possible laptop configurations.

Each agent assigns a utility to an outcome ω, based on their
preference profile, denoted by UA(ω) ∈ [0, 1] for agent A. The
outcome space in combination with the preference profiles defines a
negotiation scenario. Both agents solely know their own preference
profile and can only try to infer the preferences of the opponent
by interpreting their bids. Both agents have a reservation value
r ∈ [0, 1], which is the minimal utility the agents find acceptable.
An agent will not accept offers that do not meet this value.

4 RLBOA
In this section we provide an exposition of the proposed RLBOA-
framework, a modular framework that facilitates the creation of
autonomous negotiation agents using reinforcement learning (RL).
We first introduce the components of our framework and then
provide an instantiation of an RLBOA agent that exemplifies the
framework. The effectiveness of this agent is subsequently demon-
strated empirically.

4.1 The RLBOA-Framework
In order to provide a reinforcement learning interface for nego-
tiation, we need to describe the states and actions that facilitate
interaction with the environment in a domain-independent way.
This is made difficult by two characteristics of the outcome space:
first, its size is exponential in the number of issues, and second, the
outcomes are unique for every combination of issues; e.g. outcomes
in the energy domain cannot be directly compared with outcomes
in a negotiation on a holiday destination. Our framework aims to
address both these problems.

The RLBOA-framework allows for a compression of the state-
and action space that facilitates the optimization of the bidding strat-
egy by any reinforcement learning algorithm in such a way that it
can be applied to different negotiation settings. The main character-
istic of the framework is its modularity, allowing the agent designer
to select a combination of components that is suitable for the task
at hand. To this end we build on the existing BOA-framework [3]
which allows a decoupling of the negotiation strategy into a bidding
strategy, an opponent model, and an acceptance condition. In prin-
ciple, each of these could be optimized with RL, but we choose to
focus in the remainder on optimizing the bidding strategy only. We
extend the existing modularity of BOA by allowing the use of any
RL algorithm as well as any opponent model or acceptance strategy.
This makes it an easy to use and broadly applicable framework.
The fact that the same agent can learn from different settings is of
great value for the creation of cross-domain negotiators. Figure 1
sketches an overview of the framework; the reminder of this section
details the individual components.

4.1.1 Compressing the Outcome Space. Since the state- and ac-
tion space as well as the diversity in negotiation settings are very
large, we propose a reduction of state- and action space by rep-
resenting every outcome ωi by its corresponding utility for the
RLBOA agentUA(ωi). We believe that this is a sufficient mapping
that ensures two things. First, it ensures that the state space is
always numerical. This allows for the use of any reinforcement
learning method as an optimization technique. Second, it makes
the framework agnostic to different negotiation scenarios since all
outcome spaces in our negotiation model can be mapped onto the
utility axis (see also Section 4.2.1).

4.1.2 Modular Strategy Components. The decoupled nature of
BOA agents allows all of their components to be implemented
independently. This permits us to only learn the bidding strategy
and choose off the shelf components for the opponent model and
acceptance strategy. This reduces the complexity of the problem by
eliminating the need to simultaneously also learn the opponent’s
preferences, or whether or not to accept an offer. Moreover, the

BOA framework provides a natural way to translate the result
of actions taken in the utility space back to the outcome space
(Figure 1). Actions result in a target utility ũA. The opponent model
strategy uses this target in combination with the current estimate
of the opponent model to produce a candidate offer ω̃. Finally,
the acceptance condition determines whether to communicate the
offer or settle for an agreement. It is important to note that every
component outside of the RL module is considered as part of the
environment, from the RL agent’s perspective.

4.1.3 Reward Function and Training Pipeline. The framework
gives the user the flexibility to choose any combination of (numeri-
cal) values from the negotiation model as a representation of states
and actions. For example, a very simple state representation that
uses the utilities of the opponent’s last bid and your own last bid
is enough. One can add any statistic derived from the negotiation
environment, like distance to the Pareto frontier (if available) or the
opponent’s concession rate. It is also possible to add a time com-
ponent. The action description can then be a target utility which
will be passed on to the opponent model strategy (Figure 1). More-
over, any reinforcement learning algorithm can be used to train
the agent based on a custom reward function. A natural reward
signal could be the utility of an agreement, but other measures can
be used based on the goal of the agent (e.g. utility functions based
on social welfare or time). When using off-policy RL methods, it is
sufficient to just have training data to train an agent. A simulation
environment or even a complete description of the MDP is not
needed. This can be useful when the agent needs to be trained for
real-life applications, where simulation or a complete description
of the MDP may not be available, but raw data is.

4.2 Using The Framework - RLBOA-Agent
Our RLBOA-framework can be instantiated by defining it’s compo-
nents (indicated in Figure 1). In our implementation we use of the
shelf components for the opponent model and the acceptance strat-
egy. We focus on showing how the RL-Strategy can be integrated.

4.2.1 State- and Action Space. The outcome space is discretized
into evenly spaced utility bins, based on the utility function of the
RLBOA agent (Figure 2). A bin is defined as

ub(ωt
A) =

⌊
UA(ω

t
A) × Nbins

⌋
ub(ωt

B) =
⌊
UA(ω

t
B) × Nbins

⌋
whereUA(·) is the utility function for agentA andNbins the number
of bins. A state st can then be represented as

st = {ub(ω
t
A),ub(ω

t
B),ub(ω

t−1
A),ub(ω

t−1
B), t}

where ub(ωA) is the utility bin of the RLBOA agent for its own
bid, while ub(ωB) is the utility bin of the RLBOA-agent for the
opponent’s bid. The time is normalized between 0 and 1 as the
percentage of progress made towards the deadline. This value is
discretized in the same way as the utility. Both the time bins and
the utility bins are evenly spaced between their minimum and
maximum values. Figure 2 provides an example of how a utility bin
is represented. Note that our state representation is thus composed
of four utility bins and a time bin; the figure shows an example
of one of the utility bins. When no bids have been placed yet, the

Figure 2: An example of a utility bin (green bar) in the out-
come space. All pink dots are possible outcomes and the red
curve is the Pareto frontier.

missing bins are represented by a special token. This specific state-
space description is in some sense a minimal working example that
still allows to learn behavior that depends on the immediate bidding
history (last round), as well as on the urgency of completing the
negotiation before the deadline.

An action consists of either going up one bin (retracting offer),
going down one bin (conceding offer), or staying in the same utility
bin (idle offer). There is a special case for the opening offer. In this
case the action space consists of the entire range of bins. There are
two ways in which the RLBOA-agent can propose an action that
results in selecting an empty bin. If the agent exceeds the limits
of the outcome space, determined by the lowest acceptable utility
max(ubAmin,ub

A
res), where ubAres is the reservation price bin, and

the highest obtainable utility ubAmax , the environment responds by
bouncing back, meaning that it stays in the current bin. In other
cases, when an empty bin is selected the environment skips over
that bin in the direction of the proposed action. Once a target bin is
selected by the RLBOA-agent, the opponent model strategy picks a
bid based on the estimated preferences of the opponent. Specifically,
the opponent model strategy proposes the offer that has the highest
expected utility for the opponent in that bin.

4.2.2 Optimization Method. To optimize the RLBOA-agent’s
strategy we use Q-learning [30]. This is a model-free RL algorithm
that iteratively improves an estimate of the state-action value func-
tion by bootstrapping on previous estimates while sampling state
transitions from the environment. In particular, the agent samples
tuples of the form ⟨st ,at , rt+1, st+1⟩ from experience and then up-
dates the estimated state-action value function Q(s,a) as follows:

Q(st ,at) ← (1 − α)Q(st ,at) + α
[
rt+1 + γ ·maxa′Q(st+1,a′)

]
.

TheQ-learning agent selects actions by sampling from a behavior
policy π that is ϵ-greedy with respect to the Q-function, i.e., at =
argmaxa Q(st ,a) with probability (1 − ϵ), and with probability
ϵ a random action is taken in order to balance exploration and
exploitation [25]. After a policy has been learned, exploration is
disabled by setting ϵ = 0 during evaluation.

In our negotiation domain, rewards are zero in all states except
for the terminal state, where the reward equals the utility of the final
agreement, or the reservation value r ∈ [0, 1] when no agreement
is reached before the deadline.

5 EXPERIMENTAL SETUP
We conduct two experiments in order to demonstrate the learning
capabilities of our RLBOA-agent. The goal of the first experiment
is to show that the agent is indeed capable of learning a mean-
ingful policy across domains where the outcome space differs in
size and (types of) issues. The second experiment tests whether
the same agent can also learn in an environment where its oppo-
nent’s strategy varies across negotiations. Rather than generating
a state-of-the-art autonomous negotiating agent, our purpose is to
demonstrate the feasibility of our reinforcement learning frame-
work for developing autonomous negotiating agents. We analyze
the agent in six different scenarios against a pool of four different
opponents, which will be discussed later in this section.

Opponent Model. A simple frequency model is used as opponent
model of the agent. This model keeps track of a ranking of issues
based on how many times a certain item appears in the opponent’s
bidding history [29]. Even thoughmore accurate Bayesian opponent
models exist [3], we opted for a computationally less expensive one.
The benefits in terms of utility of more complex models are usually
not significant [29].

Acceptance Condition. Acceptance strategies can be seen as util-
ity based, time-based or a combination of the two [4]. Our agent
uses a utility-based acceptance strategy, ACnext (α, β):

Aa (t t ,ωt
B→A) =

End if t > T ,

Accept if α ·UA(ω
t
B→A) + β ≥ UA(ω

t+1
A→B),

ωt+1
A→B otherwise.

where ωt
B→A is the bid at time t from the opponent B to agent A,T

is the (universal) deadline, α is a scaling factor, β is the minimally
acceptable ‘utility gap’ agent A allows, ωt+1

A→B is the counter-offer
agent A would send at time t + 1 to the opponent andUA(ω) is the
utility the agent obtains from a bid. Specifically, we set α = 1 and
β = 0. Conceptually, the agent accepts an offer if its utility exceeds
that of the agents counter offer.

Hyperparameters. Several hyperparameters influence the perfor-
mance of the RLBOA-agent, which we tune using a small hyperpa-
rameter search. The objectives to which the hyperparameters are
tuned are the number of episodes to convergence and the utility
obtained at the stable policy.

The effect of an increase in the number of utility bins Nub is
twofold. Firstly, it influences the impact of a concession. More bins
means a smaller concession or retraction at each turn. Secondly, the
state space is exponential in Nub . Experiments varying the value
of this parameter showed that for larger values it took the agent
longer to converge on a policy. We set Nub = 10 for all experiments,
which we found to be a good balance between convergence time
and performance. The number of time bins Ntb is set to 5, allowing
the agent to differentiate between two early stages, a middle stage
and two final stages of the negotiation session.

We use an ϵ-greedy exploration policy that picks argmaxa Q(s,a)
with probability 1 − ϵ and a random action otherwise. The random
factor in the policy ensures all states will be seen, given enough
time. The best performing exploration rate was found to be ϵ = 0.1,
which we subsequently use in all experiments. The learning rate
α is set to 0.15. The learning process behaves differently based on
the initial values in Q . For example, an agent designer may want
an agent to start with a bid that is high enough to leave enough
room to concede. We limit the use of such heuristics in our rein-
forcement learning agent to show that our method is able to learn
these strategies on its own.

5.1 Negotiation Settings
Our first set of experiments are scenario generality experiments,
in which the scenarios that the RLBOA-agent encounters during
training are randomly selected for each negotiation, while the op-
ponent remains fixed. We run this experiment four times, once for
each opponent. The policy that the agent learns in each experi-
ment is evaluated on the same individual negotiation settings it
encountered during training (i.e. against the same opponent and
all scenarios).

In the second set of experiments, the opponent generality ex-
periments, the scenario is kept fixed while the opponents are ran-
domized during training. Evaluation is then performed in the same
scenario against all opponents. In all experiments the agents are
trained until convergence.

Scenarios. We consider six different scenarios. They vary in size
of the outcome space |Ω | and opposition. Opposition is a standard
metric in the yearly Autonomous Negotiation Agent Competition
[2] and is defined as the minimal euclidean distance to the optimal,
but not necessarily achievable, outcome for both parties ω̂:

opposition (Ω) = min
ω ∈Ω

d(ω, ω̂)

In our case ω̂ = ω s.t. (UA(ω),UB (ω)) = (1, 1). It is an indication
of how aligned the interests of the agents are. This is important
for the resulting strategy, e.g. a cooperative strategy might work
better in low opposition domains and a non-cooperative strategy
might work better in high opposition domains. For reference, in a
zero-sum game for two players, opposition ≈ 0.71. We created six
scenarios: a small, a medium and large domain in terms of outcome
space and for all three domains one scenario with low and one
scenario with high opposition.

In Table 1 an overview can be found for the characteristics of
these scenarios. In every other aspect, the scenarios are equivalent.
These characteristics were chosen to explore the effects of size and
opposition on learning in the RLBOA-framework. Robustness to
size is an explicit goal of the framework and therefore of key interest.
Opposition is an important factor in what makes an appropriate
negotiation strategy. Low opposition domains leave more room
for cooperation and win-win outcomes whereas high opposition
domains are more like zero-sum games.

Opponents. To ensure a diverse pool of opponents, we follow
the categorization of various families of strategies made by Faratin
et al. [9]. Specifically we generate several instances of the time
dependent agent family and the behavior dependent agent family.

Table 1: Overview of the scenarios. We consider three do-
mains, each with two sets of preference profiles (low and
high opposition).

Domain Outcome space Low opp. High opp.
Small 256 0.2615 0.5178
Medium 3.125 0.3111 0.5444
Large 46.656 0.2595 0.5250

Agents of the time dependent agent family concede more rapidly
when the deadline approaches. The agents within this family can
be differentiated by the shape of the concession curve the agents
exhibit (i.e. at what rate they concede over time). Candidate offers
are generated as follows [11]:

ω̃t+1
A→B = U

A
min + F

A(t)(UA
max −U

A
min)

where ω̃t+1 is the next candidate offer,UA
min is the lowest obtainable

utility above the reservation value,UA
max is the highest obtainable

utility for agent A and the function FA is modelled as

FA(t) = kA + (1 − kA)
(
min(t,T)

T

) 1
e

where kA ∈ [0, 1] is the utility of the first bid offered by the time
dependent agent. At k = 0 the agent opens with its maximum utility
bid; the parameter e then determines the manner in which the agent
concedes and defines the shape of the concession curve. There are
an infinite number of possible agents within this family, but two
sets of agents show distinctive different behavior: Boulware agents
with e < 1; and conceder agents with e ≥ 1 [11]. Boulware agents
concede very slowly until the deadline is almost reached and then
concede to the reservation value very quickly. In contrast, conceder
agents move towards their reservation value rather quickly, with
e = 1 being a linear conceder. As our focus is on negotiation settings
with a deadline, this is a reasonable family of agents to have in our
opponent pool.

The second family of agents in our opponent pool is the behavior
dependent family, often referred to as Tit-for-Tat agents. Agents of
this family base their actions on the opponent’s actions. Specifically,
they imitate the opponent’s behavior to a certain degree to avoid
exploitation. Within this family Faratin et al. [9] make a distinction
between absolute imitation, relative imitation and average imitation
over the last few turns. The behavior dependent agent we use is
inspired by the average Tit-for-Tat agent.

The average Tit-for-Tat agent uses a percentage change in a
window of γ ∈ [1, t] bids over the opponent’s history to determine
its bid [9]:

ω̃t+1
A→B = min

(
max

(
u
tn−2γ
B→A

utnB→A

utn−1A→B ,U
A
min

)
,UA

max

)
Here, ω̃t+1 is again the new candidate offer and the ratio is the rela-
tive change of utility of the opponent’s offer over the past 2γ turns.
This factor is applied to the utility value of the time-dependent
agent’s last offer to produce the next candidate offer, which is
clipped to the range of the agent’s reservation value and its maxi-
mum obtainable utility. Before the agent has enough information

to utilize its imitative behavior it goes through the possible bids in
descending order of its own utility.

Our final opponent pool consists of two time dependent agents,
with e ∈ {0.1, 1.0} and k = 1.0, and two behavior dependent agents,
with γ ∈ {1, 2}. All agents are implemented as simple BOA agents
with the strategies described above as their bidding strategy and
the same acceptance strategy as the RLBOA-agent: ACnext (α, β).
These agents don’t have a model of their opponent preferences, so
the opponent modelling component is irrelevant.

Since the opponents are relatively simple, the optimal strategy
to be used against them is easily identifiable. Against a time de-
pendent opponent an agent can generally maximize its utility by
consistently offering their maximum utility outcome and wait for
its opponent to concede all the way to an agreement. Against be-
havior dependent opponents it is optimal to produce a sequence of
offers that is increasing in the utility of the opponent, while you
concede as little as possible in terms of your own utility. The per-
ceived concession triggers the opponent to reciprocate. Knowing
these optimal policies allows for a qualitative comparison of the
learned strategy of the RLBOA-agent.

5.2 Evaluation Metrics
The performance of the RLBOA-agent is measured as the utility
obtained by following a strictly greedy policy on a converged Q-
table. Specifically, we compare this utility to the RandomAgent.
This is a BOA agent with the same components as the RLBOA-
agent, except for the use of a bidding strategy that simply picks
random offers. In settings where most offers are valued very highly,
the RandomAgent will obtain a high utility agreement often with
low variance. In settings were the utility of bids is more spread out,
this will be expressed in the mean and variance of utilities obtained
by repeated negotiations by the RandomAgent. Therefore the mean
and variance are good measures of howmuch of the obtained utility
is due to the distribution of outcomes.

To obtain baselines for the mean utility and its variance in a
given setting we aggregate the result of 100 negotiations by the
RandomAgent. Obtaining a utility that is reasonably higher than the
expectation under the RandomAgent is an indication whether the
RLBOA-agent has developed a good strategy. We define reasonably
higher as being more than two standard deviations from the mean.
Due to the low number of samples we cannot claim statistical
significance. However, it does show that the learned behavior results
in a utility that is well above the expected value of the negotiation
setting, which demonstrates the capabilities of the RLBOA-agent.

6 RESULTS
In the following section the results of the experiments from the
previous section are presented. First, we look at the quantitative
results of both the scenario and domain generality experiments.
Next, we will discuss some qualitative results in the form of de-
scriptions of commonly observed agent behavior and a closer look
at the individual negotiation settings.

6.1 Scenario Generality
It is immediately clear from Figure 3a that the RLBOA-agent steadily
improves its return during training. In this specific experiment,

(a) Scenario generality experiment against the Boulware agent. (b) Opponent generality experiment in the medium sized domain
with low opposition.

Figure 3: Learning curve of RLBOA-agents. The curves show the progress in utility and rounds played over sessions.

against the Boulware agent, the policy converges after approxi-
mately 40.000 negotiations. The learned policy at that point eval-
uates at an average utility of 0.88 over all domains, which is 0.41
higher than the RandomAgent. The duration of a negotiation ses-
sion is highly correlated with the utility that is obtained in nego-
tiations against time dependent agents. This is not surprising, as
these agents are designed to offer more attractive bids over time.
What the RLBOA-agent learns is to hold off an agreement for as
long as it can, which is optimal against time dependent agents.

Looking at the utilities in the individual settings in Table 2a, it
can be seen that all four policies perform much better than random
across scenarios. This means that the RLBOA-agent is able to learn
a policy that is agnostic with respect to to the specifics of the do-
mains. This result is promising for using the RLBOA-framework
for creating agents that negotiate in more realistic settings. This
result is strongest against time dependent agents, where the policy
performs two standard deviations above the RandomAgent in every
evaluated setting. Overall the results in Table 2a show the RLBOA-
agent learned how to negotiate well in 41 of the 48 negotiation
settings. In 23 of the 48 settings it obtained a utility above 0.90,
which means that the RL-strategy could not have performed better,
as the agreement ended up in the highest utility bin. Moreover,
all the outcomes in each scenario are approximately normally dis-
tributed across the utility axis, with a mean around 0.6 (see Figure 2
for an example). Therefore very few outcomes are expected in the
[0.9, 1] utility range, and thus achieving such an outcome is a strong
indicator for a successful negotiation policy.

6.2 Opponent Generality
From the results in Table 2b it is clear that the RLBOA-agent has
learned a non-trivial policy in all experiments. The agent learned
strategies that performed well in in 39 of the 48 negotiation set-
tings, while in 14 out of the 48 settings it obtained a utility score
higher than 0.9. Similar learning curves to the scenario general-
ity experiments are observed (see Figure 3b for an example). The
ability to generalize, however, is less for opponents than that it is

for scenarios. In two out of six experiments, the agent generalizes
perfectly over opponents. On the other hand, there are also experi-
ments in which the performance of the policy is skewed towards
the time dependent agents. This suggests that there is a trade-off
in performance against the two types of opponents, and the time
dependent agents have higher value. This dynamic is discussed
further in subsection 6.3, in the qualitative analysis. Convergence
in these experiments is related to the size of the scenario. In small
scenarios, the policy converges after around 20.000 negotiations.
This number is 30.000 for medium and 35.000 for large scenarios.

6.3 Qualitative Analysis
To appreciate the results in full, it is worth looking at behavior of the
RLBOA-agent qualitatively. We discuss some general observations
below.

6.3.1 Scenario Generality. From inspecting the behavior of the
RLBOA-agent in different scenarios, we can see that it consistently
learns to open the negotiation with an offer in the highest utility bin.
Against the behavior dependent agents it tries not to concede too
much, while waiting for the opponent model to learn how to offer
better bids to the opponent. Against the time dependent agents the
RLBOA-agent also learned to hold out in the higher utility bins and
wait for the time dependent agent to concede.

6.3.2 Opponent Generality. For the opponent generality experi-
ments we observed that the RLBOA-agent generally opens in a high
utility bin and then stays around that bin. As we observed before,
this is a decent strategy against all agents. The only setting in which
this does not seem to work well is against the relative Tit-for-Tat
agent in the small domain with high opposition. Intuitively, this
might be explained by the fact that against the relative Tit-for-Tat
agent the RLBOA-agent must offer the opponent consecutively bet-
ter bids to make it concede. However, in the small domain with
high opposition there is little room to offer a better bid within a
given utility bin, and therefore the RLBOA-agent needs to concede
in order to obtain an agreement.

Table 2: Results of scenario and opponent generality experiments. Utilities obtained by evaluating the learned policy in dif-
ferent negotiation settings. Left: RL-Agent was first mover, right: RL-Agent was second mover. Bold entries indicate that the
utility was at least two standard deviations higher than the average utility of the RandomAgent in the same setting.

(a) Scenario generality. Each row represents one policy. The utilities are those obtained by that policy in the corresponding setting.

Opponent
Scenario

Small-Low Small-High Medium-Low Medium-High Large-Low Large-High

AverageTitForTat1 0.80; 0.60 0.71; 0.63 0.94; 0.82 0.73; 0.63 0.95; 0.80 0.81; 0.73
AverageTitForTat2 0.94; 0.81 0.73; 0.64 0.94; 0.82 0.72; 0.67 0.88; 0.70 0.76; 0.81
TimedependentLinear 0.91; 0.95 0.92; 0.90 0.91; 0.91 0.91; 0.90 0.90; 0.90 0.91; 0.95
TimedependentBoulware 0.96; 0.92 0.82; 0.83 0.90; 0.91 0.81; 0.83 0.90; 0.92 0.91; 0.89

(b) Opponent generality. Each column represents one policy. The utilities are those obtained by that policy in the corresponding setting.

Opponent
Scenario

Small-Low Small-High Medium-Low Medium-High Large-Low Large-High

AverageTitForTat1 0.81; 0.77 0.00; 0.00 0.94; 0.82 0.00; 0.62 0.89; 0.81 0.81; 0.71
AverageTitForTat2 0.94; 0.86 0.82; 0.00 0.94; 0.82 0.72; 0.70 0.89; 0.81 0.82; 0.63
TimedependentLinear 0.91; 0.86 0.92; 0.90 0.91; 0.91 0.84; 0.84 0.86; 0.90 0.84; 0.86
TimedependentBoulware 0.83; 0.86 0.91; 0.92 0.90; 0.91 0.81; 0.90 0.81; 0.81 0.70; 0.89

7 CONCLUSION AND DISCUSSION
We propose RLBOA, a modular framework that facilitates the cre-
ation of negotiating agents that use reinforcement learning to learn
efficient policies that can generalize over a range of negotiation
scenarios. The modularity of the RLBOA-framework allows agent
designers to pick and choose from a wide range of components
to design an agent that fits the task at hand. Our experimental
results show that the RLBOA-agent can generalize over both dif-
ferent opponents and different scenarios. The RLBOA-agent learns
to effectively exploit both time dependent and behavior depen-
dent opponents by either making use of its opponent model or the
opponent’s tendency to concede over time.

While our experiments focus on a bilateral round-based alter-
nating offers negotiation protocol, we believe that our formulation
of negotiation as a reinforcement learning problem can be adapted
easily to other forms of negotiation. For example, in a multi-agent
setting, the state representation can be extended by adding utility
bins for each opponent. Moreover, if the deadline is measured in
wall-time, the agent can seamlessly incorporate such a time factor
in its state description. The rest of this section outlines some of the
possible avenues of future research.

With respect to our experimental setup, it is clear that our oppo-
nent pool and the used set of scenarios are not exhaustive. Further-
more, all learning was done in absence of a discount rate, which
affects the strategies due to a lack of incentive for the agent to close
deals faster. Further research is needed to examine the behavior of
the RLBOA-agent in a broader set of negotiation settings. Another
important realization is that, as our approach utilizes the BOA-
framework, the performance of the RLBOA-agent depends on the
performance of other components besides the bidding strategy. Con-
tinuation of this research could test the RL-strategy with different
combinations of components. At the same time, extensions to the
RLBOA-framework are possible where other BOA components are
optimized through RL. An extension where the acceptance strategy
is optimized can be implemented relatively easily by using the same

mapping of outcomes onto utility, together with any RL-algorithm.
For the opponentmodel, the RLBOA-framework cannot be extended
as naturally, since the opponent model does not perform actions.
Other interesting extensions could be a new meta-component that
learns to select an (RL-)strategy from a library of strategies. Also,
the framework is dependent on a (possibly estimated) utility. In
real-world settings, the agent must thus also be capable of obtaining
these utilities from the end-user.

Finally, a logical approach for extending the capabilities of the
model is the application of function approximators (such as deep
neural networks) and other advanced reinforcement learning tech-
niques that improve sample efficiency (such as eligibility traces).
While function approximators are more complex and less stable to
train, they can be used to to learn a better state representation given
all the available information about the negotiation. Examples of this
are an efficient representation of the bidding history or opponent
strategies on a meta-level, which might increase the performance
in terms of utility and generality.

ACKNOWLEDGMENTS
This work is part of the Veni research programme with project num-
ber 639.021.751, which is financed by the Netherlands Organisation
for Scientific Research (NWO). This project has received funding in
the framework of the joint programming initiative ERA-Net Smart
Energy Systems’ focus initiative Smart Grids Plus, with support
from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 646039. We are indebted
to the anonymous reviewers of AAMAS 2019 for their valuable
feedback.

REFERENCES
[1] Reyhan Aydoğan, David Festen, Koen V Hindriks, and Catholijn M Jonker. 2017.

Alternating offers protocols for multilateral negotiation. In Modern Approaches
to Agent-based Complex Automated Negotiation. Springer, 153–167.

[2] Tim Baarslag, Katsuhide Fujita, Enrico H Gerding, Koen Hindriks, Takayuki Ito,
Nicholas R Jennings, Catholijn Jonker, Sarit Kraus, Raz Lin, Valentin Robu, et al.

2013. Evaluating practical negotiating agents: Results and analysis of the 2011
international competition. Artificial Intelligence 198 (2013), 73–103.

[3] Tim Baarslag, Koen Hindriks, Mark Hendrikx, Alexander Dirkzwager, and
Catholijn Jonker. 2014. Decoupling negotiating agents to explore the space
of negotiation strategies. In Novel Insights in Agent-based Complex Automated
Negotiation. Springer, 61–83.

[4] Tim Baarslag, Koen Hindriks, and Catholijn Jonker. 2013. Acceptance conditions
in automated negotiation. In Complex Automated Negotiations: Theories, Models,
and Software Competitions. Springer, 95–111.

[5] Tim Baarslag, Michael Kaisers, Enrico Gerding, Catholijn M Jonker, and Jonathan
Gratch. 2017. When will negotiation agents be able to represent us? The chal-
lenges and opportunities for autonomous negotiators. (2017).

[6] Shalabh Bhatnagar, Doina Precup, David Silver, Richard S Sutton, Hamid R Maei,
and Csaba Szepesvári. 2009. Convergent temporal-difference learning with
arbitrary smooth function approximation. In Advances in Neural Information
Processing Systems. 1204–1212.

[7] Henrique Lopes Cardoso and Eugenio Oliveira. 2000. Using and evaluating
adaptive agents for electronic commerce negotiation. In Advances in Artificial
Intelligence. Springer, 96–105.

[8] Lihong Chen, Hongbin Dong, Qilong Han, and Guangzhe Cui. 2013. Bilateral
multi-issue parallel negotiation model based on reinforcement learning. In In-
ternational Conference on Intelligent Data Engineering and Automated Learning.
Springer, 40–48.

[9] Peyman Faratin, Carles Sierra, and Nick R. Jennings. 1998. Negotiation decision
functions for autonomous agents. Robotics and Autonomous Systems 24, 3-4 (1998),
159–182.

[10] Shaheen Fatima, Sarit Kraus, and Michael Wooldridge. 2014. Principles of auto-
mated negotiation. Cambridge University Press.

[11] S Shaheen Fatima, Michael Wooldridge, and Nicholas R Jennings. 2001. Optimal
negotiation strategies for agents with incomplete information. In International
Workshop on Agent Theories, Architectures, and Languages. Springer, 377–392.

[12] MJC Hendrikx. 2012. Evaluating the Quality of Opponent Models in Automated
Bilateral Negotiations. (2012).

[13] Koen Hindriks and Dmytro Tykhonov. 2008. Opponent modelling in automated
multi-issue negotiation using bayesian learning. In Proceedings of the 7th inter-
national joint conference on Autonomous agents and multiagent systems-Volume
1. International Foundation for Autonomous Agents and Multiagent Systems,
331–338.

[14] Mike Lewis, Denis Yarats, Yann N Dauphin, Devi Parikh, and Dhruv Batra. 2017.
Deal or No Deal? End-to-End Learning for Negotiation Dialogues. ArXiv e-prints
(2017). arXiv:cs.AI/1706.05125

[15] Raz Lin, Sarit Kraus, Tim Baarslag, Dmytro Tykhonov, Koen Hindriks, and
Catholijn M Jonker. 2014. Genius: An integrated environment for supporting the
design of generic automated negotiators. Computational Intelligence 30, 1 (2014),
48–70.

[16] Raz Lin, Sarit Kraus, Jonathan Wilkenfeld, and James Barry. 2008. Negotiating
with bounded rational agents in environments with incomplete information

using an automated agent. Artificial Intelligence 172, 6 (2008), 823.
[17] Fernando Lopes, Michael Wooldridge, and Augusto Q Novais. 2008. Negotiation

among autonomous computational agents: principles, analysis and challenges.
Artificial Intelligence Review 29, 1 (2008), 1–44.

[18] Noyda Matos, Carles Sierra, and Nicholas R Jennings. 1998. Determining suc-
cessful negotiation strategies: An evolutionary approach. In Multi Agent Systems,
1998. Proceedings. International Conference on. IEEE, 182–189.

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[20] Valentin Robu, DJA Somefun, and Johannes A La Poutré. 2005. Modeling com-
plex multi-issue negotiations using utility graphs. In Proceedings of the fourth
international joint conference on Autonomous agents and multiagent systems. ACM,
280–287.

[21] J Rodriguez-Fernandez, T Pinto, F Silva, I Praça, Z Vale, and JM Corchado. 2019.
Context aware q-learning-based model for decision support in the negotiation of
energy contracts. International Journal of Electrical Power & Energy Systems 104
(2019), 489–501.

[22] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484.

[23] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of Go without human knowledge. Nature 550,
7676 (2017), 354.

[24] Manu Sridharan and Gerald Tesauro. 2002. Multi-agent Q-learning and regression
trees for automated pricing decisions. In Game Theory and Decision Theory in
Agent-Based Systems. Springer, 217–234.

[25] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction (second ed.). The MIT Press, Cambridge, MA.

[26] Gerald Tesauro. 1995. Temporal difference learning and TD-Gammon. Commun.
ACM 38, 3 (1995), 58–68.

[27] Gerald Tesauro. 2000. Pricing in agent economies using neural networks and
multi-agent Q-learning. In Sequence learning. Springer, 288–307.

[28] Gerald Tesauro and Jeffrey O Kephart. 2002. Pricing in agent economies using
multi-agent Q-learning. Autonomous Agents and Multi-Agent Systems 5, 3 (2002),
289–304.

[29] Okan Tunalı, Reyhan Aydoğan, and Victor Sanchez-Anguix. 2017. Rethinking fre-
quency opponent modeling in automated negotiation. In International Conference
on Principles and Practice of Multi-Agent Systems. Springer, 263–279.

[30] Christopher J.C.H. Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[31] Dajun Zeng and Katia Sycara. 1998. Bayesian learning in negotiation. Interna-
tional Journal of Human-Computer Studies 48, 1 (1998), 125–141.

http://arxiv.org/abs/cs.AI/1706.05125

	Abstract
	1 Introduction
	2 Related Work
	2.1 Autonomous Negotiation
	2.2 Reinforcement Learning
	2.3 RL in Autonomous Negotiation Domains

	3 Negotiation Model
	4 RLBOA
	4.1 The RLBOA-Framework
	4.2 Using The Framework - RLBOA-Agent

	5 Experimental Setup
	5.1 Negotiation Settings
	5.2 Evaluation Metrics

	6 Results
	6.1 Scenario Generality
	6.2 Opponent Generality
	6.3 Qualitative Analysis

	7 Conclusion and Discussion
	Acknowledgments
	References

