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Abstract
Multi-agent learning plays an increasingly important rilesolving complex dynamic problems in to-
day’s society. Recently, an evolutionary game theoretir@gch to multi-agent reinforcement learning
has been proposed as a first step towards a more generatitedramework. This article uses the evolu-
tionary game theory perspective to link behavioral praperof learning algorithms to their performance
in both homogeneous and heterogeneous games, therebipating to a better understanding of multi-
agent reinforcement learning dynamics. Simulation expenits are performed in the domainDf< 2
normal form games with the learning algorithms Lenient ama-tenient Frequency Adjusted Q-learning,
Finite Action-set Learning Automata and Polynomial WeggRegret Minimization. The results show
that evolutionary game theory provides an efficient way tedjmt the behavior, convergence properties
and performance of reinforcement learners. In generaiemey is found to be the preferable choice in
cooperative games. Furthermore, the non-lenient leamgpgrithms do not show significant differences
when their intrinsic learning speed is compensated for.

1 Introduction

Recent years have seen an increasing interest in multitbggening within the field of Artificial Intelligence
(Al [8]. The dynamic and complex nature of many multi-agemiironments makes reinforcement learning
(RL) a preferred learning technique in such cases. SinggeveRL has already been studied in much detail
and acquired a strong theoretical foundation [9]. Thisvedid for the construction of proofs of convergence
for several RL methods, e.g., Q-learning [12]. However tiradent RL still lacks such a general theoretical
framework, despite some specific theoretical proofs of eagence (e.g., [2]). Recently, an evolutionary
game theoretic approach to reinforcement learning hastagen up that might fill this gap [11].

This article combines the result of simulation experimeavith insights from evolutionary game theory,
in order to provide a thorough analysis of the qualitativevadl as quantitative aspects of reinforcement
learning. Such an analysis provides a means to link ceriraioral properties of a learning method to
its performance. Furthermore, different RL methods ardyaed both in homogeneous and in heteroge-
neous games, thereby being able to compare results fronsbettarios. Recently, [5] have studied several
RL methods in a similar setting. This article contributeghese results by emphasizing the difference
between traditional RL methods (such as studied by [5]) angtht methods, i.e., methods that forgive mis-
coordination in the initial learning phase. The latter heeen shown theoretically to improve convergence
in coordination games [7]. This article extends on and corHfithese results empirically.

The remainder of this article is structured as follows. B&c® provides an overview of reinforcement
learning and its link to evolutionary game theory. The ekpental setup is described in section 3. Sec-
tions 4 and 5 present the results of the homogeneous andgeterous experiments. Finally, section 6
summarizes and concludes this article.

2 Background
This section presents the necessary background for theimeyes performed in this article. We limit the

theoretical discussion to a brief overview of reinforceirlearning and its relation to evolutionary game
theory. For a more extensive introduction to these fieldsrélader is referred to [9] and [3], respectively.



2.1 Reinforcement learning

In reinforcement learning (RL), an agent has to learn by &l error interaction with the environment.
It performs actior¥ with probability x; and receives reward as a feedback that indicates the desirability
of the resulting environment state. Two types of RL methagsgenerally distinguished: value-based
methods, which estimate the expected discounted futurarde®;, from which then a policy: is derived;
and policy-based methods, which learn directly in the godigace. This article studies the following four
RL methods.

Frequency Adjusted Q-learning (FAQ) [4] is a variation of the value-based Q-learning methodt tha
modulates the learning step size to be inversely propatiwnthe action selection probability. This modu-
lation leads to more rational behavior that is less susikeptid initial over-estimation of the action values.

The update rule for FAQ learning3; (t+1) «— Q;(t)+min (zﬁ, 1) alr(t+1)+vymax; Q;(t) — Q:(t)],

wherea andg are learning step size parameters, aiglthe discount factor. The Boltzmann action-selection
Q;r 1
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Lenient FAQ-learning (LFAQ) is a variation of FAQ learning. Leniency has been shown torawe
convergence to the optimal solution in coordination ganigslieniency is introduced by having the FAQ
method colleck rewards for an action, before updating this action’s Q-@ddased on the highest perceived
reward.

Finite Action-set Learning Automata (FALA) [10] is a policy-based learning method. This article
considers the Linear Reward-Inaction update scheme. Htepdts action selection probability based on a
fractiona of the reward received. The probability is increased forgblected action, and decreased for all
other actions. The update rules for FALA argt + 1) «— x;(t) + ar;(t + 1)(1 — a;(t)) if ¢ is the action
taken at time, andx; (t + 1) « x;(t) — ar;(t + 1)z;(¢) for all actionsj # i.

Regret Minimization (RM) [5] is another policy-based learning method. It updatepaigcy based on
the loss (regret) incurred for playing that policy, withpest to some other policy. This article studies the
Polynomial Weights method, that calculates the loss wipeet to the optimal policy in hindsight. Again, a
learning step size parametecontrols the update process. The method updates the wéittet actions by
wi(t+1) — w;(t) (1 — ad;(t + 1)). Normalization of these weights gives the action selegtimbabilities.

mechanism is used with a temperatarer; =

2.2 Theevolutionary game theoretic approach

Evolutionary game theory (EGT) adopts the idea of evolufiiom biology to describe how agents optimize
their behavior without complete information [6]. It theoe provides a solid basis to study the decision
making process of boundedly rational agents in an unceetaitonment. EGT utilizes concepts such as
evolutionarily stable strategies (ESS) and replicatoragiyits (RD) to describe behavior and convergence
of a population of agents playing a certain game. Suppokisigetach player is represented by a population
consisting of pure strategies, the fact that a player plagisr@A with probabilityp can be translated as a
fractionp of the population playing pure stratedly In a two-player game, the coupled replicator equations
that describe the change in the frequency distribution theepure strategies are given by

dCCi

o = wil(Ay)i — 27 Ay] (1)
Wi ()~ Ba] @

wherex (y) is the frequency distribution for player 1 (2), add B) represents its individual payoff matrix.

Recently, a formal relation between evolutionary gamerheaad reinforcement learning has been es-
tablished, by showing that a specific RL method, Cross legindonverges in the continuous time limit
to the replicator dynamics [1]. Based on this result, sehvauthors have derived evolutionary models for
different RL methods. Table 1 presents the evolutionaryef®df FAQ [11], LFAQ [7], FALA [11] and
RM [5].

3 Experimental setup

Table 1 shows the four games that are used for the learningriexgnts. All are2 x 2 normal form games,
meaning that they are two-player games in which each plageitd choose between two actions. Three



Table 1: Overview of the evolutionary dynamics of the studied leagnnethods. Only the dynamics of the
first player are given; the dynamics of the second player ediobnd by substituting? for A, swappingr
andy, and swapping the matrix indexes in thgrule of LFAQ.

Method Evolutionary model

FAQ = eni[(Ay); — aT Ay] + mia T asln(3)

Aii¥s KZ’“AMSAL'J' yk') Ni(z’“f‘m@“u y’“) N}

LFAQ u; = Zj YR
dos — ati(y; — 2Tu) + 300 >, a:jln(i—J)

FALA %4 = qn;[(Ay); — o7 Ay]

do; _ _ xi(Ay)i—aT Ayl
RM dt — 1—A[maxy(Ay)r—zT Ay|

distinct classes df x 2 normal form games can be identified [3]. The first class cémsisgames with one
pure Nash equilibrium, such as the Prisoner’s Dilemma. Hoersd class of games has two pure and one
mixed Nash equilibrium. The Battle of the Sexes, Stag Hudt@aordination game belong to this class.
Finally, the third class of games has only one mixed Nashlibguim; an example is the Matching Pennies
game. Results from the latter are left out as these do notibate additional insights for the discussion.

Cc D O F S H O F
D 1,0 %’% F 0,0 %’1 H %’0 %’5 F 0,0 %a%
Prisoner’s Dilemma Battle of the Sexes Stag Hunt CoordimeBame

Figure 1: Normalized payoff matrices for the four different games.

3.1 Convergence speed

When two different learners oppose each other in a game,ntagynot learn equally fast. This can lead
to artifacts caused by the mere difference in learning spatxr than a true differentiation in qualitative
learning dynamics. Knowing the relation between the lea'ngtep sizes and their convergence speed
makes it possible to select the step sizes in such a way thaliffierent methods learn equally fast in self
play, which ensures a fair competition in mixed play.

Table 2 shows the average number of iterations needed temmmfor the different learning methods,
in the Prisoners’ Dilemma using the step size= 0.001. These averages are calculated by running 250
simulations with starting points uniformly distributedemthe policy space, and measuring the number of
iterations needed for the learnere¢@onverge { = 0.001). The other parameters are sefte= 7 = 0.01
and~ = 0 for FAQ and LFAQ, andx = 5 for LFAQ. These results also provide a means to level the
convergence speed of the different algorithms. For exanplievel the convergence speed of FAQ and

Table 22 Mean convergence time of the differentable 3: The learning speed ratip for different
learners in the Prisoner's Dilemma (rounded avegames and learners, with respect to FAQ, as cal-
ages over 250 simulations with uniformly distributedulated from 250 simulations with uniformly dis-
starting points), learning speed rajoand conver- tributed starting points for each pair of learners.
gence time given modulated learning rate

PD a=0001 p a=0.001lp | PD SH BoS CG

FAQ 46388 1.00 46388 FAQ [ 1.00 1.00 1.00 1.00
LFAQ 270003 5.82 46625 LFAQ | 5.82 7.81 7.20 5.41
RM 38413 0.83 46655 RM 0.83 097 091 0095

FALA 38116 0.82 46121 FALA | 0.82 0.89 0.90 0.95



RM, the ratiop between their respective average numbers of iteratiaran be calculated as

krar

PRM,FAQ = 2 .
FAQ
This ratio might differ depending on the game, since thenles’ behavior also depends on the game,
especially when multiple equilibria are present. The tasylvalues ofp are indicated in Table 2, and
additional experiments with the modulated learning rgteshow that it compensates the intrinsic learning
speed differences. The same procedure can be applied tohtiegames, using the corresponding values
for p, with similar results, summarized in Table 3. The valuemfbin this table are used throughout the
remainder of the experiments.

4 Sdf play

Self play is the standard form of learning experiments, iiciieach competing player implements the same
learning method. All experiments use the same parametergetstep sizer = 0.001 times the ratio given

in Table 3; for (L)FAQ,5 = 0.01, 7 = 0.01 and~y = 0. This section describes the behavior of the learning
methods in self-play. Convergence properties and perfocmare evaluated in Section 5 in comparison to
mixed play results.

The behavior of a learner over time can be visualized usirrgjadtory plot or by plotting the direc-
tional field of the corresponding replicator dynamics. Hereombination of both is used to show how the
individual learning trajectories relate to their evolu@wy prediction. All trajectory plots show the average
trajectory over 10 runs of 50,000 iterations each (100,00¢He Prisoner’s Dilemma).

Figure 2 shows the difference in behavior of FAQ and LFAQ mfbur games studied. FAQ is taken as
a representative example of the non-lenient learners, avhekavior is very similar. The results show that
both algorithms indeed behave as predicted by their ewslaty model. In the Prisoner’s Dilemma, there
is not much variation in the trajectories or predictions thoe two different learners. As can be seen, all
trajectories converge to the game’s Nash equilibrium (Dyiich in the plot lies at (0,0). The directional
field shows that indeed all possible initial policies willeatually converge to this equilibrium, for both types
of learners. In the three games belonging to the secondargtengith multiple equilibria, a clear distinction
can be seen between the three non-lenient learners, FAQ)\ BAd RM, and the lenient learner LFAQ.
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Figure 2: Policy trajectories of FAQ and LFAQ in three different gamisthese games, the trajectories of
FALA and RM are similar to FAQ.

In the Battle of the Sexes, the trajectories converge toahmesequilibria for both types of learners, but
do so in different ways. The lenient learner has a differeenhequilibrium much closer to (O,F) which
indicates that each player sticks to its preferred actioohmanger by ignoring lower payoffs. The higher
the degree of leniency, the closer the mixed equilibriuns ¢@(O,F).



The Stag Hunt, and to a lesser extend also the CoordinatiomeGalearly shows the advantage of
leniency in cooperative environments. In these games,filagter prefer the same equilibrium, in both cases
(1,1) in the plot. In the Stag Hunt game, non lenient learpegter the safer risk dominant equilibrium (0,0),
where both hunt for Hare. The lenient learner in this casgifes mistakes made by the other player, and
can therefore reach the Pareto optimal equilibrium (S, ®)ast cases. In the Coordination game this effect
is less strong, since there is no risk dominant equilibrithmwever, again the lenient learner is able to reach
the Pareto optimal equilibrium more often. This effect isatébed in more detail in the next section.

5 Mixed play

In the mixed play experiments, games are played by hetesmysnpairs of players, meaning that both
players implement different learning methods. The resflthese experiments are compared with those of
the self play experiments in the previous section. This jglesvinsight into how the behavior of a learner
depends on the behavior of its opponent. Moreover, theteesuicate how well the learners do against
different opponents by looking at their performance.

Again, all experiments use the same parameter settingsnétthiods use step size= 0.001 times the
ratio given in Table 3. For (L)FAQZ = 0.01, 7 = 0.01 and~y = 0. This section is divided in three parts,
describing the behavior, convergence properties, andperance of the learning methods respectively.

5.1 Behavior

The behavior of the learners is again analyzed by runninglsitions with several different starting points,
and plotting the resulting trajectories together with tlirectional field of the mixed replicator dynamics.
For each starting point, 10 simulations are run and the tiagutrajectories are averaged. Each simulation
consists of 50,000 iterations (100,000 in the Prisonederbma).

Again, the non-lenient learners behave very similar to edbhbr, and most deviations occur only when
LFAQ is involved. For example, Figure 3 shows the behaviocahbinations of the three non-lenient
learnersin the Stag Hunt game. The behavior of these cotidniisaf learners does not show any significant
deviation. Moreover, the behavior is very similar to thd piy behavior of these learners, see for example
the self play of FAQ in Figure 2.

FAQ - FALA FAQ - RM FALA - RM

Figure 3: Policy trajectories of combinations of non-lenient leasnia the Stag Hunt game.

When LFAQ is involved, on the other hand, the resulting béraends to differ from any of the learners’
self play behavior. Figure 4 shows the behavior of a comhmnaif FAQ and LFAQ in four different games.
In these games, both FALA and RM in combination with LFAQ shawy similar results. The depicted
trajectories clearly deviate from the self play behavioany of the learners. It is interesting to note that the
evolutionary prediction is still correct, which shows thaigo in mixed play the replicator dynamics provide
a very useful analytical tool.

5.2 Convergence properties

The effect of the behavioral changes described in the puswsection can best be analyzed by looking at
the changing basins of attraction of the different gamess &halysis is limited to the three games with
multiple equilibria, since the Prisoner’s Dilemma has oo basin of attraction that either fills the whole
policy space, or is empty.
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Figure4: Policy trajectories of mixed play between FAQ and LFAQ inrfdifferent games. The results of
the Prisoners’ Dilemma resemble self-play behavior. LFAG & larger basin of its preferred equilibrium
in the Battle of Sexes, and it supports convergence to Papghmal equilibria in common interest games.
The dotted trajectory line in Battle of the Sexes indicates hot all simulations converged to the same
equilibrium for this starting point.

As noted before, the most interesting changes occur wheliEAnvolved, otherwise results resemble
self play. Since RM, FALA and FAQ showed almost identical &debr, FAQ is used as a representative for
these three non-lenient learners. Figure 5 shows the basmtsraction in the three games for FAQ and
LFAQ, both in self play and when the two play against eachrotfibe basins are calculated by iterating
the replicator equations overl@0 x 100 grid, and represented as a solid line indicating their bordke
directional field of the replicator dynamics is also showrptovide a clear overview of the convergence
properties.

The figures show several interesting properties of mixeg fdarning. In the Stag Hunt game, for
example, both learners have almost opposite basins ottidtnan self play, with FAQ converging to (H,H)
and LFAQ to (S,S) in the largest part of the policy space. Whese two learners play against each other,
the resulting basins of attraction appear to be a mix betileese two opposites. A similar effect can be
seen in the Coordination Game, although in this case therdifte is much smaller as the original basins of
attraction are more similar.

Also interesting to note is that in the Battle of the SexesQF#fnd LFAQ show similar convergence
properties in self play, but LFAQ profits in the mixed sceaaa larger part of the policy space converges
to (0,0), which corresponds to the preferred equilibriupfr{lef LFAQ, being player 2. When the learners
switch sides, again LFAQ ‘wins’ and FAQ ‘loses’ in a largerripaf the policy space. The results for all
combinations of learners are summarized in Table 4.

Table 4: Percentage of the policy space belonging to the basin afatitin of the various equilibria, for
different combinations of learners. Pareto optimal efQuidi are indicated with.

SH BoS CG
(HH) (5,S) ‘ (FF) (0,0)| (FF) (O,0y ‘
FAQ self play 74.3 257 | 495 495 257 73.9
FAQ - LFAQ 37.3 62.7 | 68.3 31.7| 16.7 83.3
LFAQ self play | 19.0 80.9 | 495 495 10.8 89.2

5.3 Performance

The performance of the learners is analyzed by looking adtieeage reward earned during game play. The
average reward of learning method A against learning meBh@l calculated as the average over 1,000
simulations where A is player 1 and B is player 2, and anoti@d@ simulations where B is player 1 and
Ais player 2. The starting points of the simulations are amifly distributed over the policy space. These
results are compared to the self play results of lenient amdlenient learners.

Figure 6 shows the average reward over time for FAQ and LFAQeifiplay and mixed play. In the
Prisoner’s Dilemma not much variation is seen in the resuticating that both learners do equally well in
this game. In the Stag Hunt game, LFAQ performs better tha@ iself play, but it does worse in mixed
play. This can be explained by the fact that FAQ still preterplay action H in the beginning, which leads
to a lower payoff for LFAQ when playing S. In the Battle of thex@s, LFAQ clearly gains from mixed play,
whereas FAQ looses. Finally, in the Coordination Game thesthresult lies between the two learners’
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Figure 5. Overview of the basins of attraction of FAQ, LFAQ, and the tdmation between both learners
as representative examples of the difference betweeneroert and lenient learners.

results in self play. In this game, both players always rectie same payoff and therefore their cumulative
reward in mixed play is exactly equal.

\ —FAQ self
oast\ | LFAQ self
Y —— FAQ mixed

L\ —
04\ LFAQ mixed|
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. FAQ self 7 —FAQ self
—— FAQ mixed . -+ LFAQ self
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Prisoner’s Dilemma Stag Hunt Battle of the Sexes CoordingBame

Figure6: Average reward over time for FAQ (solid), LFAQ (dotted), FAfxed (dashed), and LFAQ mixed
(dash-dot).

It is also possible to calculate the expected average rewfattte learners given in Table 5 using the
basins of attraction calculated in Table 4 and the game%fpayatrices. These evolutionary expectations
are in line with the simulation-based findings presenteddnie 6, which shows that the replicator dynamics
are not only useful in describing the behavior and convergefithe learners, but can also accurately predict
their performance.

6 Discussion and Conclusions

A method has been designed to level the convergence spedteoéut learners in self play by calculating

a modulation factor for the learning step size. This is regpliio ensure a fair competition in the case of
mixed play, and to rule out artifacts based on quantitatither than qualitative differences between the
learners. The self play experiments, described in Secti@hdw that all learners behave as predicted by
their evolutionary models. There are notable differeneaa/ben the behavior of LFAQ and the other, non-



Table 5: Expected average reward for FAQ and LFAQ in self play and ohiplay, based on the games’
basins of attraction and payoff matrices. These resulte/ shat leniency is a weakly dominant choice in
cooperative games, as it achieves at least as high rewairtsbgay opponent.

SH BoS CG
Player 1 PlayerJ Player 1 PlayerJ Player 1 PlayerJ
FAQ self play 0.75 0.75 0.74 0.74 0.87 0.87
FAQ - LFAQ 0.88 0.88 0.66 0.84 0.92 0.92
LFAQ selfplay | 0.94 0.94 0.74 0.74 0.95 0.95

lenient learners. In common interest cooperative gamésasithe Stag Hunt, LFAQ converges to the Pareto
dominant equilibrium more often than the other learners,éghy achieving a higher average reward.

Similar effects are seen in the mixed play experiments ofi®@e8. Again, there is a difference between
the non-lenient learners, and the lenient learner LFAQ. tMosably, in the Battle of the Sexes LFAQ is
able to push the learning process towards its preferredilequin more often than the non-lenient learners,
leading to a higher average reward in mixed play for LFAQ anoveer reward for its opponent. In the
cooperative games with common interest, LFAQ ‘teachesjiigsonent to converge to the Pareto optimal
equilibrium more often, which leads to a higher payoff foe thther player and a lower payoff for LFAQ
itself. In general, LFAQ performs at least as well againspacfic opponent as the other investigated
learners do. As such, it is the preferable and safe choiceoimperative games.

Furthermore, it has been shown that the replicator dynaonsnsefficiently describe the behavior and
convergence properties of the learners both in self playramixed play. Moreover, the replicator dynamics
can be used to predict the performance of the learners inifipgames, using the game’s basins of attraction
and payoff matrix to compute the expected average rewattedearners.
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