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Abstract

Multi-agent learning plays an increasingly important rolein solving complex dynamic problems in to-
day’s society. Recently, an evolutionary game theoretic approach to multi-agent reinforcement learning
has been proposed as a first step towards a more general theoretical framework. This article uses the evolu-
tionary game theory perspective to link behavioral properties of learning algorithms to their performance
in both homogeneous and heterogeneous games, thereby contributing to a better understanding of multi-
agent reinforcement learning dynamics. Simulation experiments are performed in the domain of2 × 2

normal form games with the learning algorithms Lenient and non-lenient Frequency Adjusted Q-learning,
Finite Action-set Learning Automata and Polynomial Weights Regret Minimization. The results show
that evolutionary game theory provides an efficient way to predict the behavior, convergence properties
and performance of reinforcement learners. In general, leniency is found to be the preferable choice in
cooperative games. Furthermore, the non-lenient learningalgorithms do not show significant differences
when their intrinsic learning speed is compensated for.

1 Introduction

Recent years have seen an increasing interest in multi-agent learning within the field of Artificial Intelligence
(AI) [8]. The dynamic and complex nature of many multi-agentenvironments makes reinforcement learning
(RL) a preferred learning technique in such cases. Single-agent RL has already been studied in much detail
and acquired a strong theoretical foundation [9]. This allowed for the construction of proofs of convergence
for several RL methods, e.g., Q-learning [12]. However, multi-agent RL still lacks such a general theoretical
framework, despite some specific theoretical proofs of convergence (e.g., [2]). Recently, an evolutionary
game theoretic approach to reinforcement learning has beentaken up that might fill this gap [11].

This article combines the result of simulation experimentswith insights from evolutionary game theory,
in order to provide a thorough analysis of the qualitative aswell as quantitative aspects of reinforcement
learning. Such an analysis provides a means to link certain behavioral properties of a learning method to
its performance. Furthermore, different RL methods are analyzed both in homogeneous and in heteroge-
neous games, thereby being able to compare results from bothscenarios. Recently, [5] have studied several
RL methods in a similar setting. This article contributes tothese results by emphasizing the difference
between traditional RL methods (such as studied by [5]) and lenient methods, i.e., methods that forgive mis-
coordination in the initial learning phase. The latter havebeen shown theoretically to improve convergence
in coordination games [7]. This article extends on and confirms these results empirically.

The remainder of this article is structured as follows. Section 2 provides an overview of reinforcement
learning and its link to evolutionary game theory. The experimental setup is described in section 3. Sec-
tions 4 and 5 present the results of the homogeneous and heterogeneous experiments. Finally, section 6
summarizes and concludes this article.

2 Background

This section presents the necessary background for the experiments performed in this article. We limit the
theoretical discussion to a brief overview of reinforcement learning and its relation to evolutionary game
theory. For a more extensive introduction to these fields, the reader is referred to [9] and [3], respectively.



2.1 Reinforcement learning

In reinforcement learning (RL), an agent has to learn by trial and error interaction with the environment.
It performs actioni with probabilityxi and receives rewardri as a feedback that indicates the desirability
of the resulting environment state. Two types of RL methods are generally distinguished: value-based
methods, which estimate the expected discounted future rewardQi, from which then a policyx is derived;
and policy-based methods, which learn directly in the policy space. This article studies the following four
RL methods.

Frequency Adjusted Q-learning (FAQ) [4] is a variation of the value-based Q-learning method, that
modulates the learning step size to be inversely proportional to the action selection probability. This modu-
lation leads to more rational behavior that is less susceptible to initial over-estimation of the action values.

The update rule for FAQ learning isQi(t+1)← Qi(t)+min
(

β
xi

, 1
)

α [r(t + 1) + γ maxj Qj(t)−Qi(t)],

whereα andβ are learning step size parameters, andγ is the discount factor. The Boltzmann action-selection

mechanism is used with a temperatureτ : xi = eQi·τ
−1

∑

j e
Qj ·τ−1 .

Lenient FAQ-learning (LFAQ) is a variation of FAQ learning. Leniency has been shown to improve
convergence to the optimal solution in coordination games [7]. Leniency is introduced by having the FAQ
method collectκ rewards for an action, before updating this action’s Q-value based on the highest perceived
reward.

Finite Action-set Learning Automata (FALA) [10] is a policy-based learning method. This article
considers the Linear Reward-Inaction update scheme. It updates its action selection probability based on a
fractionα of the reward received. The probability is increased for theselected action, and decreased for all
other actions. The update rules for FALA arexi(t + 1) ← xi(t) + αri(t + 1)(1 − xi(t)) if i is the action
taken at timet, andxj(t + 1)← xj(t)− αri(t + 1)xj(t) for all actionsj 6= i.

Regret Minimization (RM) [5] is another policy-based learning method. It updates itspolicy based on
the loss (regret) incurred for playing that policy, with respect to some other policy. This article studies the
Polynomial Weights method, that calculates the loss with respect to the optimal policy in hindsight. Again, a
learning step size parameterα controls the update process. The method updates the weight of the actions by
wi(t+1)← wi(t) (1− αli(t + 1)). Normalization of these weights gives the action selectionprobabilities.

2.2 The evolutionary game theoretic approach

Evolutionary game theory (EGT) adopts the idea of evolutionfrom biology to describe how agents optimize
their behavior without complete information [6]. It therefore provides a solid basis to study the decision
making process of boundedly rational agents in an uncertainenvironment. EGT utilizes concepts such as
evolutionarily stable strategies (ESS) and replicator dynamics (RD) to describe behavior and convergence
of a population of agents playing a certain game. Supposing that each player is represented by a population
consisting of pure strategies, the fact that a player plays action A with probabilityp can be translated as a
fractionp of the population playing pure strategyA. In a two-player game, the coupled replicator equations
that describe the change in the frequency distribution overthe pure strategies are given by

dxi

dt
= xi[(Ay)i − xT Ay] (1)

dyi

dt
= yi[(Bx)i − yT Bx] (2)

wherex (y) is the frequency distribution for player 1 (2), andA (B) represents its individual payoff matrix.
Recently, a formal relation between evolutionary game theory and reinforcement learning has been es-

tablished, by showing that a specific RL method, Cross learning, converges in the continuous time limit
to the replicator dynamics [1]. Based on this result, several authors have derived evolutionary models for
different RL methods. Table 1 presents the evolutionary models of FAQ [11], LFAQ [7], FALA [11] and
RM [5].

3 Experimental setup

Table 1 shows the four games that are used for the learning experiments. All are2 × 2 normal form games,
meaning that they are two-player games in which each player has to choose between two actions. Three



Table 1: Overview of the evolutionary dynamics of the studied learning methods. Only the dynamics of the
first player are given; the dynamics of the second player can be found by substitutingB for A, swappingx
andy, and swapping the matrix indexes in theui rule of LFAQ.

Method Evolutionary model

FAQ dxi

dt
= αxi

τ
[(Ay)i − xT Ay] + xiα

∑

j xj ln(
xj

xi
)

LFAQ ui =
∑

j

Aijyj

[(

∑

k:Aik≤Aij
yk

)κ
−

(

∑

k:Aik<Aij
yk

)κ]

∑

k:Aik=Aij
yk

dxi

dt
= αxi

τ
(ui − xT u) + xiα

∑

j xj ln(
xj

xi
)

FALA dxi

dt
= αxi[(Ay)i − xT Ay]

RM dxi

dt
= λxi[(Ay)i−xT Ay]

1−λ[maxk(Ay)k−xT Ay]

distinct classes of2× 2 normal form games can be identified [3]. The first class consists of games with one
pure Nash equilibrium, such as the Prisoner’s Dilemma. The second class of games has two pure and one
mixed Nash equilibrium. The Battle of the Sexes, Stag Hunt and Coordination game belong to this class.
Finally, the third class of games has only one mixed Nash equilibrium; an example is the Matching Pennies
game. Results from the latter are left out as these do not contribute additional insights for the discussion.
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Figure 1: Normalized payoff matrices for the four different games.

3.1 Convergence speed

When two different learners oppose each other in a game, theymay not learn equally fast. This can lead
to artifacts caused by the mere difference in learning speedrather than a true differentiation in qualitative
learning dynamics. Knowing the relation between the learners’ step sizes and their convergence speed
makes it possible to select the step sizes in such a way that the different methods learn equally fast in self
play, which ensures a fair competition in mixed play.

Table 2 shows the average number of iterations needed to converge for the different learning methods,
in the Prisoners’ Dilemma using the step sizeα = 0.001. These averages are calculated by running 250
simulations with starting points uniformly distributed over the policy space, and measuring the number of
iterations needed for the learner toǫ-converge (ǫ = 0.001). The other parameters are set toβ = τ = 0.01
andγ = 0 for FAQ and LFAQ, andκ = 5 for LFAQ. These results also provide a means to level the
convergence speed of the different algorithms. For example, to level the convergence speed of FAQ and

Table 2: Mean convergence time of the different
learners in the Prisoner’s Dilemma (rounded aver-
ages over 250 simulations with uniformly distributed
starting points), learning speed ratioρ and conver-
gence time given modulated learning rateαρ.

PD α = 0.001 ρ α = 0.001ρ

FAQ 46388 1.00 46388
LFAQ 270003 5.82 46625
RM 38413 0.83 46655
FALA 38116 0.82 46121

Table 3: The learning speed ratioρ for different
games and learners, with respect to FAQ, as cal-
culated from 250 simulations with uniformly dis-
tributed starting points for each pair of learners.

PD SH BoS CG
FAQ 1.00 1.00 1.00 1.00
LFAQ 5.82 7.81 7.20 5.41
RM 0.83 0.97 0.91 0.95
FALA 0.82 0.89 0.90 0.95



RM, the ratioρ between their respective average numbers of iterationsk can be calculated as

ρRM,FAQ =
kRM

kFAQ

.

This ratio might differ depending on the game, since the learners’ behavior also depends on the game,
especially when multiple equilibria are present. The resulting values ofρ are indicated in Table 2, and
additional experiments with the modulated learning rateαρ show that it compensates the intrinsic learning
speed differences. The same procedure can be applied to the other games, using the corresponding values
for ρ, with similar results, summarized in Table 3. The values found in this table are used throughout the
remainder of the experiments.

4 Self play

Self play is the standard form of learning experiments, in which each competing player implements the same
learning method. All experiments use the same parameter settings: step sizeα = 0.001 times the ratio given
in Table 3; for (L)FAQ,β = 0.01, τ = 0.01 andγ = 0. This section describes the behavior of the learning
methods in self-play. Convergence properties and performance are evaluated in Section 5 in comparison to
mixed play results.

The behavior of a learner over time can be visualized using a trajectory plot or by plotting the direc-
tional field of the corresponding replicator dynamics. Here, a combination of both is used to show how the
individual learning trajectories relate to their evolutionary prediction. All trajectory plots show the average
trajectory over 10 runs of 50,000 iterations each (100,000 for the Prisoner’s Dilemma).

Figure 2 shows the difference in behavior of FAQ and LFAQ in the four games studied. FAQ is taken as
a representative example of the non-lenient learners, whose behavior is very similar. The results show that
both algorithms indeed behave as predicted by their evolutionary model. In the Prisoner’s Dilemma, there
is not much variation in the trajectories or predictions forthe two different learners. As can be seen, all
trajectories converge to the game’s Nash equilibrium (D,D), which in the plot lies at (0,0). The directional
field shows that indeed all possible initial policies will eventually converge to this equilibrium, for both types
of learners. In the three games belonging to the second category, with multiple equilibria, a clear distinction
can be seen between the three non-lenient learners, FAQ, FALA and RM, and the lenient learner LFAQ.
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Figure 2: Policy trajectories of FAQ and LFAQ in three different games. In these games, the trajectories of
FALA and RM are similar to FAQ.

In the Battle of the Sexes, the trajectories converge to the same equilibria for both types of learners, but
do so in different ways. The lenient learner has a different mixed equilibrium much closer to (O,F) which
indicates that each player sticks to its preferred action much longer by ignoring lower payoffs. The higher
the degree of leniency, the closer the mixed equilibrium gets to (O,F).



The Stag Hunt, and to a lesser extend also the Coordination Game, clearly shows the advantage of
leniency in cooperative environments. In these games, bothplayer prefer the same equilibrium, in both cases
(1,1) in the plot. In the Stag Hunt game, non lenient learnersprefer the safer risk dominant equilibrium (0,0),
where both hunt for Hare. The lenient learner in this case forgives mistakes made by the other player, and
can therefore reach the Pareto optimal equilibrium (S,S) inmost cases. In the Coordination game this effect
is less strong, since there is no risk dominant equilibrium.However, again the lenient learner is able to reach
the Pareto optimal equilibrium more often. This effect is described in more detail in the next section.

5 Mixed play

In the mixed play experiments, games are played by heterogeneous pairs of players, meaning that both
players implement different learning methods. The resultsof these experiments are compared with those of
the self play experiments in the previous section. This provides insight into how the behavior of a learner
depends on the behavior of its opponent. Moreover, the results indicate how well the learners do against
different opponents by looking at their performance.

Again, all experiments use the same parameter settings. Allmethods use step sizeα = 0.001 times the
ratio given in Table 3. For (L)FAQ,β = 0.01, τ = 0.01 andγ = 0. This section is divided in three parts,
describing the behavior, convergence properties, and performance of the learning methods respectively.

5.1 Behavior

The behavior of the learners is again analyzed by running simulations with several different starting points,
and plotting the resulting trajectories together with the directional field of the mixed replicator dynamics.
For each starting point, 10 simulations are run and the resulting trajectories are averaged. Each simulation
consists of 50,000 iterations (100,000 in the Prisoner’s Dilemma).

Again, the non-lenient learners behave very similar to eachother, and most deviations occur only when
LFAQ is involved. For example, Figure 3 shows the behavior ofcombinations of the three non-lenient
learners in the Stag Hunt game. The behavior of these combinations of learners does not show any significant
deviation. Moreover, the behavior is very similar to the self play behavior of these learners, see for example
the self play of FAQ in Figure 2.
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Figure 3: Policy trajectories of combinations of non-lenient learners in the Stag Hunt game.

When LFAQ is involved, on the other hand, the resulting behavior tends to differ from any of the learners’
self play behavior. Figure 4 shows the behavior of a combination of FAQ and LFAQ in four different games.
In these games, both FALA and RM in combination with LFAQ showvery similar results. The depicted
trajectories clearly deviate from the self play behavior ofany of the learners. It is interesting to note that the
evolutionary prediction is still correct, which shows thatalso in mixed play the replicator dynamics provide
a very useful analytical tool.

5.2 Convergence properties

The effect of the behavioral changes described in the previous section can best be analyzed by looking at
the changing basins of attraction of the different games. This analysis is limited to the three games with
multiple equilibria, since the Prisoner’s Dilemma has onlyone basin of attraction that either fills the whole
policy space, or is empty.
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Figure 4: Policy trajectories of mixed play between FAQ and LFAQ in four different games. The results of
the Prisoners’ Dilemma resemble self-play behavior. LFAQ has a larger basin of its preferred equilibrium
in the Battle of Sexes, and it supports convergence to Paretooptimal equilibria in common interest games.
The dotted trajectory line in Battle of the Sexes indicates that not all simulations converged to the same
equilibrium for this starting point.

As noted before, the most interesting changes occur when LFAQ is involved, otherwise results resemble
self play. Since RM, FALA and FAQ showed almost identical behavior, FAQ is used as a representative for
these three non-lenient learners. Figure 5 shows the basinsof attraction in the three games for FAQ and
LFAQ, both in self play and when the two play against each other. The basins are calculated by iterating
the replicator equations over a100 × 100 grid, and represented as a solid line indicating their border. The
directional field of the replicator dynamics is also shown toprovide a clear overview of the convergence
properties.

The figures show several interesting properties of mixed play learning. In the Stag Hunt game, for
example, both learners have almost opposite basins of attraction in self play, with FAQ converging to (H,H)
and LFAQ to (S,S) in the largest part of the policy space. Whenthese two learners play against each other,
the resulting basins of attraction appear to be a mix betweenthose two opposites. A similar effect can be
seen in the Coordination Game, although in this case the difference is much smaller as the original basins of
attraction are more similar.

Also interesting to note is that in the Battle of the Sexes, FAQ and LFAQ show similar convergence
properties in self play, but LFAQ profits in the mixed scenario: a larger part of the policy space converges
to (0,0), which corresponds to the preferred equilibrium (F,F) of LFAQ, being player 2. When the learners
switch sides, again LFAQ ‘wins’ and FAQ ‘loses’ in a larger part of the policy space. The results for all
combinations of learners are summarized in Table 4.

Table 4: Percentage of the policy space belonging to the basin of attraction of the various equilibria, for
different combinations of learners. Pareto optimal equilibria are indicated with∗.

SH BoS CG
(H,H) (S,S)∗ (F,F) (O,O) (F,F) (O,O)∗

FAQ self play 74.3 25.7 49.5 49.5 25.7 73.9
FAQ - LFAQ 37.3 62.7 68.3 31.7 16.7 83.3
LFAQ self play 19.0 80.9 49.5 49.5 10.8 89.2

5.3 Performance

The performance of the learners is analyzed by looking at theaverage reward earned during game play. The
average reward of learning method A against learning methodB is calculated as the average over 1,000
simulations where A is player 1 and B is player 2, and another 1,000 simulations where B is player 1 and
A is player 2. The starting points of the simulations are uniformly distributed over the policy space. These
results are compared to the self play results of lenient and non-lenient learners.

Figure 6 shows the average reward over time for FAQ and LFAQ inself play and mixed play. In the
Prisoner’s Dilemma not much variation is seen in the results, indicating that both learners do equally well in
this game. In the Stag Hunt game, LFAQ performs better than FAQ in self play, but it does worse in mixed
play. This can be explained by the fact that FAQ still prefersto play action H in the beginning, which leads
to a lower payoff for LFAQ when playing S. In the Battle of the Sexes, LFAQ clearly gains from mixed play,
whereas FAQ looses. Finally, in the Coordination Game the mixed result lies between the two learners’
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Figure 5: Overview of the basins of attraction of FAQ, LFAQ, and the combination between both learners
as representative examples of the difference between non-lenient and lenient learners.

results in self play. In this game, both players always receive the same payoff and therefore their cumulative
reward in mixed play is exactly equal.
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Figure 6: Average reward over time for FAQ (solid), LFAQ (dotted), FAQmixed (dashed), and LFAQ mixed
(dash-dot).

It is also possible to calculate the expected average rewardof the learners given in Table 5 using the
basins of attraction calculated in Table 4 and the games’ payoff matrices. These evolutionary expectations
are in line with the simulation-based findings presented in Figure 6, which shows that the replicator dynamics
are not only useful in describing the behavior and convergence of the learners, but can also accurately predict
their performance.

6 Discussion and Conclusions

A method has been designed to level the convergence speed of different learners in self play by calculating
a modulation factor for the learning step size. This is required to ensure a fair competition in the case of
mixed play, and to rule out artifacts based on quantitative rather than qualitative differences between the
learners. The self play experiments, described in Section 4, show that all learners behave as predicted by
their evolutionary models. There are notable differences between the behavior of LFAQ and the other, non-



Table 5: Expected average reward for FAQ and LFAQ in self play and mixed play, based on the games’
basins of attraction and payoff matrices. These results show that leniency is a weakly dominant choice in
cooperative games, as it achieves at least as high reward against any opponent.

SH BoS CG
Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

FAQ self play 0.75 0.75 0.74 0.74 0.87 0.87
FAQ - LFAQ 0.88 0.88 0.66 0.84 0.92 0.92
LFAQ self play 0.94 0.94 0.74 0.74 0.95 0.95

lenient learners. In common interest cooperative games such as the Stag Hunt, LFAQ converges to the Pareto
dominant equilibrium more often than the other learners, thereby achieving a higher average reward.

Similar effects are seen in the mixed play experiments of Section 5. Again, there is a difference between
the non-lenient learners, and the lenient learner LFAQ. Most notably, in the Battle of the Sexes LFAQ is
able to push the learning process towards its preferred equilibrium more often than the non-lenient learners,
leading to a higher average reward in mixed play for LFAQ and alower reward for its opponent. In the
cooperative games with common interest, LFAQ ‘teaches’ itsopponent to converge to the Pareto optimal
equilibrium more often, which leads to a higher payoff for the other player and a lower payoff for LFAQ
itself. In general, LFAQ performs at least as well against a specific opponent as the other investigated
learners do. As such, it is the preferable and safe choice forcooperative games.

Furthermore, it has been shown that the replicator dynamicscan efficiently describe the behavior and
convergence properties of the learners both in self play andin mixed play. Moreover, the replicator dynamics
can be used to predict the performance of the learners in specific games, using the game’s basins of attraction
and payoff matrix to compute the expected average reward of the learners.
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