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Summary

Multi-agent learning plays an increasingly important role in solving complex dynamic problems in to-
day’s society. Despite its importance, the field of multi-agent learning still lacks a strong theoretical
framework. Recently, an evolutionary game theoretic approach to multi-agent reinforcement learning has
been proposed as a first step towards such a framework. This thesis contributes by investigating how a
better understanding of multi-agent reinforcement learning can be derived from the evolutionary game
theoretic analysis, both in homogeneous and heterogeneous environments.

Simulation experiments are performed in the domain of 2 × 2 normal form games. The results of
these simulations are compared to the evolutionary predictions based on the replicator dynamics. This
comparison shows that evolutionary game theory provides an efficient way to predict the behavior, con-
vergence properties and performance of reinforcement learners. These insights can be used to select an
appropriate learning algorithm for a given task, or to guide parameter tuning.

Moreover, it is demonstrated how insights from evolutionary game theory can be used to improve the
performance of reinforcement learning algorithms. Lenient Frequency Adjusted Q-learning is proposed as
a learning algorithm that implements the lenient evolutionary model derived by Panait, Tuyls, and Luke
(2008). It is argued theoretically and shown empirically that the proposed learning algorithm indeed
matches the dynamical model, and that its resulting behavior is more preferable than the behavior of the
original Lenient Q-learning algorithm.

The results achieved in this thesis confirm that the evolutionary game theoretic approach is a promising
road to arrive at a general theoretical framework of multi-agent learning. Not only can this approach
help to describe and analyze the behavior and performance of reinforcement learning algorithms, it can
also point towards possible improvements, and it can even be used to design new learning algorithms.
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Chapter 1

Introduction

The goal of this thesis is to explore the strengths and benefits of, and to further deepen, the evolutionary
game theoretic approach to multi-agent reinforcement learning. This chapter provides an introduction to
multi-agent learning, its relation to evolutionary game theory, and the formal link between the two fields
that forms the basis of this approach. The contribution of this thesis to both fields is described, and an
outline of the thesis is presented.

1.1 Learning in multi-agent systems

Recent years have seen an increasing interest in multi-agent learning within the field of Artificial Intelli-
gence (AI) (Panait and Luke, 2005; Tuyls and Nowé, 2005; Shoham, Powers, and Grenager, 2007; Busoniu,
Babuška, and De Schutter, 2008). In a multi-agent system (MAS), several autonomous agents interact in
a single environment, thereby possibly influencing each other’s behavior. Multi-agent systems provide a
framework to describe and solve many complex problems in today’s society, leading to a wide range of ap-
plications. Examples include, but are certainly not limited to, robotics, scheduling, resource management,
information retrieval, and space and air traffic control (Weiss, 1999; Wooldridge, 2002; Busoniu et al.,
2008).

Multi-agent systems offer several significant advantages over traditional centralized systems (Weiss,
1999). They allow for tasks to be distributed over multiple agents, enabling their parallel execution. This
in turn improves the scalability of such systems, as their modular nature allows to easily add or remove
parts as the size of the problem changes. Moreover, the fact that each agent works independently makes
it easy to built in redundancies, which increases the system’s robustness; should one agent fail, another
agent takes over and the system can continue to operate properly. These properties make multi-agent
systems, compared to centralized systems, a more preferable solution to many real world problems.

The fact that multiple agents interact leads to a highly dynamic, non-deterministic environment.
In such an environment, defining proper behavior for each agent in advance is a highly complex task.
Therefore, learning is essential in most multi-agent systems. One of the most basic types of learning is
learning from interaction, i.e., by perceiving the effect that a certain action has on the environment. It is
this type of learning that underlies most theories of learning and intelligence (Sutton and Barto, 1998).
Three main types of interaction-based learning are usually distinguished. In supervised learning, an agent
is presented with input-output examples, and has to learn a generalized mapping from input to output
based on these examples. Unsupervised learning, on the other hand, involves learning patterns in the
input without knowing what the correct output should be. The third form of learning is reinforcement
learning (RL), in which a learner receives a reinforcement signal that tells it something about the quality
of its output, without specifying explicitly whether the output was ‘correct’. In many complex domains it
is impossible to provide exact input-output samples for reliable supervised learning, making reinforcement
learning the only feasible learning algorithm in such cases.

Single-agent reinforcement learning has already been studied in much detail and acquired a strong
theoretical foundation (Kaelbling, Littman, and Moore, 1996; Sutton and Barto, 1998). This allowed for
the construction of proofs of convergence for several RL algorithms, e.g., Q-learning (Watkins and Dayan,
1992). However, despite some specific theoretical proofs of convergence in multi-agent environments (e.g.,
Bowling and Veloso, 2002), such a general framework is still lacking for multi-agent reinforcement learning.
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Recently, an evolutionary game theoretic approach to reinforcement learning has been proposed to bridge
this gap.

1.2 The evolutionary game theoretic approach

Learning in multi-agent systems is not only relevant within the field of AI; also in game theory, multi-
agent learning has been extensively studied (Shoham et al., 2007). It is not surprising then, that the two
fields share a lot of common ground concerning this topic. For example, game theoretic concepts such as
Nash equilibria translate easily to the area of multi-agent systems. Indeed, game theory often provides
the environment in which multi-agent systems are modeled (Wooldridge, 2002).

Recently, the focus has shifted from traditional game theory to evolutionary game theory (EGT) (Gin-
tis, 2009). The concepts employed by EGT proved well suited to describe learning in multi-agent systems.
Both fields are concerned with dynamic environments with a high level of uncertainty, characterized by
the fact that agents lack complete information (Tuyls, ’t Hoen, and Vanschoenwinkel, 2006). Moreover,
there exists a formal relation between EGT and RL, based on the Replicator Dynamics (RD) that de-
scribe the change in a population of players over time. This relation was first established by Börgers
and Sarin (1997), showing that, in the continuous time limit, Cross learning converges to the replicator
dynamics. In the past decade, this formal link has been extended to other forms of reinforcement learning
such as Q-learning, Learning Automata, and Regret Minimization (Tuyls et al., 2002; Tuyls, Verbeeck,
and Lenaerts, 2003b; Tuyls et al., 2006; Klos, Ahee, and Tuyls, 2010).

This formal relation forms the basis of the evolutionary game theoretic approach to reinforcement
learning. It provides new insights towards the understanding, analysis, and design of multi-agent RL al-
gorithms (Tuyls et al., 2006). This approach has several important advantages. First of all, it sheds light
into the black box of reinforcement learning, by making it possible to analyze the learning dynamics of
RL algorithms in detail. This in turn facilitates important tasks such as parameter tuning. Furthermore,
studying the dynamics of different RL algorithms helps in selecting a specific learner for a given problem.
The triangular relation between multi-agent systems, evolutionary game theory and reinforcement learn-
ing is presented graphically in Figure 1.1, where the open arrow indicates the role of the evolutionary
game theoretic approach.

Multi-Agent Systems

Evolutionary Game Theory Reinforcement Learning

Figure 1.1: The triangular relation between reinforcement learning, multi-agent systems and evolution-
ary game theory (Tuyls, 2004). RL is a learning method suited to dynamic environments, such as MAS;
EGT provides the theoretical means to describe learning in MAS; and the replicator dynamics formally
link EGT and RL.

1.3 The contributions of this thesis

This thesis combines two different approaches to reinforcement learning. The ‘traditional’ approach
analyzes RL algorithms by extensive simulation, and focuses mainly on the performance of the learners
rather than giving a qualitative description of their underlying behavior (e.g., Jafari et al., 2001; Bab
and Brafman, 2008; Kalyanakrishnan and Stone, 2009). The evolutionary game theoretic approach
uses replicator dynamics to describe the learning behavior of various RL algorithms, and often pays
less attention to the quantitative performance of the learners (e.g., Tuyls et al., 2006; Panait et al.,
2008; Klos et al., 2010).
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The aim of this thesis is to combine insights from both approaches in order to arrive at a thorough
analysis of the qualitative as well as quantitative aspects of reinforcement learning. This provides a means
to link certain behavioral properties of a learning algorithm to its performance. This link is established
using various analytical tools to describe the behavior, convergence properties and performance of different
learners, both by simulating the actual learning algorithm and by analyzing the corresponding replicator
dynamics.

The strength of the evolutionary game theoretic approach is demonstrated by introducing a variation
of Q-learning that is based on insights from evolutionary game theory. Recently, it has been shown that
the introduction of leniency to the evolutionary model of Q-learning improves convergence to Pareto
optimal equilibria in cooperative games (Panait et al., 2008). However, discrepancies have been observed
between between the predicted and actual behavior of Q-learning (Kaisers and Tuyls, 2010), and it is
argued that these discrepancies carry over to Lenient Q-learning as well. This thesis proposes a practical
learning algorithm, Lenient Frequency Adjusted Q-learning, that implements the evolutionary model,
thereby resolving the discrepancies. The match between the model and the proposed learning algorithm
is argued theoretically and demonstrated empirically.

This thesis further contributes by investigating different state-of-the-art learning algorithms both
in homogeneous as well as in heterogeneous environments, thereby being able to compare results from
both scenarios. In a homogeneous environment, all agents learn using the same learning algorithm; in a
heterogeneous environment multiple different learners interact. Whereas in the traditional, simulation-
centered approach the idea of heterogeneous learning is not new (e.g., Bab and Brafman, 2008), the EGT
approach so far has mainly considered homogeneous learning. Therefore, this thesis contributes explicitly
to the EGT approach by employing replicator dynamics in the analysis of heterogeneous learning.

The above considerations allow to define the following general problem statement:

Problem statement. How can evolutionary game theory be used as a framework to analyze multi-agent
reinforcement learning algorithms in a heterogeneous setting; and how can a learning algorithm be derived
that implements a given evolutionary model?

This problem statement is refined in three research questions, that highlight the main problems indicated
above. First of all, the discrepancy between the predicted and actual behavior of Lenient Q-learning needs
to be resolved, in order to provide a proper comparison of the learning algorithms that are considered.
This leads to the first research question.

Research question 1. Does the proposed Lenient Frequency Adjusted Q-learning algorithm effectively
implement the evolutionary model derived by Panait et al. (2008), thereby resolving the discrepancies
observed between the actual and predicted behavior of Lenient Q-learning?

Secondly, the behavior, convergence properties, and performance of different reinforcement learning al-
gorithms need to be analyzed, both in homogeneous and in heterogeneous settings, by combining the
traditional algorithmic approach and the evolutionary game theoretic approach. A thorough analysis
of multi-agent reinforcement learning using both approaches provides a next step towards a stronger
theoretical framework. This results in the second research question.

Research question 2. To what extent can the evolutionary game theoretic approach facilitate the analy-
sis of multi-agent reinforcement learning algorithms in homogeneous environments, and can these insights
be effectively generalized to heterogeneous environments?

Finally, these insights can lead to a better understanding of how evolutionary game theory can contribute
in analyzing the link between behavior and performance of multi-agent reinforcement learning algorithms.
This understanding is required in order to establish evolutionary game theory as a theoretical framework
for multi-agent reinforcement learning. The final research question is therefore as follows.

Research question 3. How can the traditional algorithmic approach and the evolutionary game theoretic
approach complement each other in order to analyze the link between behavior and performance of multi-
agent reinforcement learning algorithms?

In order to answer these research questions, the theoretical discussion is complemented by an empirical
analysis of reinforcement learning applied to 2× 2 normal form games.
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1.4 Outline

The remainder of this thesis is structured as follows.

Chapter 2 introduces the topic of reinforcement learning, and presents the learning algorithms studied in
this thesis. These are Q-learning, Finite Action-set Learning Automata, and Polynomial Weights Regret
Minimization. Two recent variations of Q-learning are described: Lenient Q-learning and Frequency
Adjusted Q-learning. Furthermore, Lenient Frequency Adjusted Q-learning, a combination of both, is
proposed.

Chapter 3 gives an overview of the relevant game theoretic background, including normal form games,
Nash equilibria, and Pareto optimality. It then proceeds to describe concepts from evolutionary game
theory, most notably evolutionarily stable strategies and the replicator dynamics. Throughout the chapter
examples of games are given, of which the Prisoners’ Dilemma, the Stag Hunt game, and the Battle of
the Sexes are used recurrently in later chapters.

Chapter 4 presents the formal relation between evolutionary game theory - in particular the replicator
dynamics - and reinforcement learning. It recapitulates the work of Börgers and Sarin (1997), who first
proved that Cross learning converges to the replicator dynamics. Recently established evolutionary models
of (Lenient) Q-learning, Learning Automata, and Regret Minimization are presented. Furthermore, the
variation Frequency Adjusted Q-learning is described in detail, and it is argued that this variation can
be applied to Lenient Q-learning as well.

Chapter 5 outlines the methodology used for the experiments that are conducted. The games that are
used to test the learning algorithms are introduced, parameter tuning is described, and the setup of the
experiments is presented. Furthermore, the chapter describes the analytical tools that are used to analyze
the behavior, convergence properties and performance of the learning algorithms.

Chapter 6 presents the results of the experiments. It confirms that frequency adjustment indeed applies
to Lenient Q-learning as well, and presents a rigorous analysis of the influence of the learning step size
on the behavior of the learners. A detailed description is given of the behavior, convergence properties
and performance of the learning algorithms in homogeneous and heterogeneous environments.

Finally, Chapter 7 concludes this thesis by summarizing and discussing the results, and provides answers
to the research questions posed in the previous section.



Chapter 2

Reinforcement learning

Reinforcement learning (RL) is a specific type of interaction-based learning. It differs from both su-
pervised and unsupervised learning. Where a supervised learner receives full feedback on its actions by
means of input/output pairs, the reinforcement learner only receives an immediate reward and has to
learn from experience whether this reward is good or not. An unsupervised learner on the other hand
receives no feedback on the quality of its action at all, which puts the reinforcement learner somewhere
in the middle with respect to the amount of feedback that is provided (Sutton and Barto, 1998).

This chapter starts with a basic introduction to the theory of reinforcement learning. Section 2.2
then proceeds to describe some well-know single-agent learning algorithms. Section 2.3 presents the
challenges involved in multi-agent reinforcement learning, together an example of a RL algorithm that is
specifically suited to the multi-agent setting. Finally, Section 2.4 discusses several additional multi-agent
RL algorithms to provide a more broad overview of the field.

2.1 The reinforcement learning problem

A reinforcement learning agent has to learn by trial-and-error interaction with its environment. It has
no explicit knowledge on how to achieve its goal, it can only perceive the results of its actions by means
of punishment and reward. The agent’s goal is to maximize its reward over time by learning what the
best action is in each situation. A reinforcement learning algorithm is any learning algorithm that aims
to solve this problem. Therefore, reinforcement learning can best be characterized by a set of learning
problems rather than by a set of learning algorithms (Kaelbling et al., 1996; Sutton and Barto, 1998).

More formally, the RL problem consists of a set of environment states, S; a set of the agent’s actions
a(s) in each state; and a set of rewards, e.g., r ∈ [0, 1]. Each time step the agent perceives the state
s(t) ∈ S of its environment and performs action ai(t) ∈ a(s), upon which it receives a reward ri(t+1) and
the environment moves to state s(t+1). Figure 2.1 shows this agent-environment interaction graphically.

Agent

Environment

a(t)r(t)

r(t+1)

s(t+1)

s(t)

Figure 2.1: The reinforcement learning model of interaction (Sutton and Barto, 1998).

The agent implements a probability distribution, or policy, x that maps states of the environment to
probabilities over the agent’s actions. This policy is updated each time the agent receives a reward in



6 Reinforcement learning

such a way that over time it converges to the optimal policy x∗. The way in which the policy is updated
is specified by the reinforcement learning algorithm used.

Optimality in reinforcement learning means achieving the highest cumulative reward R(t) = r(t+1)+
r(t+2)+ . . .+ r(T ), where T is the final time step. In settings where the learning problem is unbounded,
i.e., where there is no final time step, this poses a problem as R(t)→∞. To solve this problem a discount
factor γ ∈ [0, 1) is introduced to bound the expected future reward. By choosing γ < 1 the infinite sum
of discounted rewards converges and the learning problem is no longer unbounded. This results in the
following definition of the cumulative reward (Sutton and Barto, 1998; Tuyls, 2004):

R(t) =
∞
∑

k=1

γkr(t + k + 1). (2.1)

The discount factor determines what an expected future reward is worth to the agent at present: the value
of a reward received k time steps ahead is decreased by a factor γk−1. If γ = 0 the agent is short-sighted;
it only considers the immediate reward r(t + 1). If the reward is close to 1 the agent is far-sighted. By
properly choosing the discount factor the agent can be driven toward early rewards and shorter solutions.

2.1.1 Exploration - exploitation dilemma

Choosing which action to take is an important aspect of reinforcement learning. Should the agent exploit
actions that proved to be good in the past to ensure a high immediate reward, or should it explore in
order to achieve better results in the future, thereby risking a low reward now? Neither of the two is
sufficient alone, and the dilemma is to find the right balance. This is known as the exploration-exploitation
dilemma (Kaelbling et al., 1996; Sutton and Barto, 1998).

Several methods have been devised that control this balance between exploration and exploitation.
Among these are greedy strategies, that choose actions with the highest estimated reward, and randomized
strategies that with a certain probability also explore a random action (Kaelbling et al., 1996). An
example of the latter is the Boltzmann exploration mechanism, which is described in detail in Section 2.2.1.
Another solution is to start exploring, and gradually switch to exploitation during the learning process.
The underlying idea is that in the beginning exploration is needed in order to estimate the pay-off that
results from an action, whereas later on exploitation becomes more important to ensure high cumulative
rewards.

2.1.2 Stateless reinforcement learning

The domain of RL problems used in this thesis is limited to that of repeated interactions between agents
in a single state environment. A number of agents encounters each other, they independently select and
perform an action, and each receives a reward. The agents then update their policy based on this reward,
and the next iteration starts. As a result, the environment of this type of interaction is static, i.e., no
state transitions occur.

In a static environment each agent only has a single set of actions a = {a1, . . . , an} to choose from.
The agent’s policy is now simply a probability distribution over its actions, x = {x1, . . . , xn}. The RL
algorithms discussed in the remainder of the chapter are all formulated as stateless algorithms. However,
it should be noted that in literature often formulation including state information are given, especially
in th case of Q-learning.

2.2 Single-agent reinforcement learning

Single-agent reinforcement learning is already an established research area with a firm theoretical basis
(Kaelbling et al., 1996; Sutton and Barto, 1998). The most notable advantage of restricting oneself to
only one agent is that the environment is stationary and can be treated as Markovian, i.e., the current
state provides as much information as the complete history of states so far. This greatly simplifies the
learning problem and allows the construction of proofs of convergence to optimal policies for several
learning algorithms, e.g., Q-learning (Watkins and Dayan, 1992).

There are two basic types of RL algorithms: value-based and policy-based learners. Value-based
learners estimate an action-value function Q that captures the long-term reward of an action and derive
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a policy from that, whereas policy-based learners update their policy directly based on the reward received
(Van den Herik et al., 2007; Kalyanakrishnan and Stone, 2009). An example of a value-based learner is
Q-learning (see Section 2.2.1); learning automata and regret minimization are examples of policy-based
algorithms (Sections 2.2.2 and 2.2.3).

2.2.1 Q-learning

Q-learning is an off-policy reinforcement learning algorithm based on the idea of temporal difference
learning (Watkins and Dayan, 1992). Temporal difference learners generally consist of two steps: policy
evaluation and policy iteration. The first step estimates a value function, that is then used in the second
step to update the policy. Q-learning differs from on-policy TD learners in that it approximates the true
action-value function Q∗ independent of the policy being followed (Sutton and Barto, 1998).

The standard form of Q-learning uses the action-value update function

Qai
(t + 1)← Qai

(t) + α

[

ri(t + 1) + γ max
j

Qaj
(t)−Qai

(t)

]

(2.2)

to refine Q at every time step, where ai is the action taken at time t, α is a step size parameter,
and γ the discount factor. Only the value of the selected action is updated; for all other actions aj ,
Qaj

(t + 1) ← Qaj
(t). The policy plays no role in this update process; it is only used to determine

which action is selected. Instead, the action-value update is based purely on the reward received and the
expected value of the next iteration, expressed by the term γ maxj Qaj

(t). After each update of Q, the
new optimal policy is derived using an action selection mechanism that converts the action-value function
Q to the probability distribution x.

Two often used action selection mechanisms are ǫ-greedy and Boltzmann exploration (Sutton and
Barto, 1998). ǫ-Greedy selects the best action (with the highest Q-value) with probability (1 − ǫ), and
with probability ǫ it selects an action at random, independent of the Q-values. The Boltzmann exploration
mechanism makes use of a temperature parameter τ that controls the balance between exploration and
exploitation. It selects action ai with probability

xi =
eQai

·τ−1

∑

j

eQaj
·τ−1

. (2.3)

A high temperature drives the mechanism towards exploration by leveling the action probabilities, whereas
a low temperature promotes exploitation by favoring actions with a high Q-value.

Q-learning is proven to converge to the true action-value function Q∗ in a Markovian environment,
given that each action is selected (and its action-value is updated) an infinite number of times (Watkins
and Dayan, 1992).

2.2.2 Learning Automata

Learning automata differ from Q-learning in that they do not estimate a value function but learn directly
in the policy space. Traditionally, these automata assume a finite set of actions, and are therefore
called finite action-set learning automata (FALA) (Thathachar and Sastry, 2002). Other, more elaborate
automata such as parameterized, generalized and continuous action-set learning automata exist but these
fall outside the scope of this thesis. For an overview, the interested reader is referred to Thathachar and
Sastry (2002).

Learning in a FALA proceeds along the same steps as other reinforcement learning algorithms. At
each time step the automaton draws a random action ai according to its policy x. Based on this action
it receives a reward ri which it then uses to update its policy x(t)→ x(t + 1). The update rule for FALA
is

xi(t + 1)←xi(t) + αri(t + 1)(1 − xi(t))− β(1 − ri(t + 1))xi(t) (2.4)

if ai is the action taken at time t or

xj(t + 1)←xj(t)− αri(t + 1)xj(t) + β(1 − ri(t + 1))
[

(k − 1)−1 − xj(t)
]

(2.5)

for all aj 6= ai
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where α, β ∈ (0, 1) are the reward and penalty parameters respectively, and k is the total number of
actions. Various settings for α and β result in different update schemes. Often used schemes are linear
reward-penalty (LR−P ) when α = β, linear reward-inaction (LR−I) when β = 0 and linear reward-ǫ-
penalty (LR−ǫP ) when α >> β (Tuyls, 2004).

2.2.3 Regret Minimization

Just like learning automata, regret minimization (RM) also learns directly in the policy space (e.g.
Jafari et al., 2001; Blum and Mansour, 2007). This method is based on the idea that an agent incurs
a certain loss for not playing optimally all the time. This typically results from the uncertainty of the
environment; the agent has to explore in order to find a better policy and will therefore play suboptimal
in the beginning. In hindsight, the agent might regret not having played differently. RM algorithms aim
to update the agent’s policy in such a way that this regret is minimized.

In general, an agent playing policy x incurs a certain loss L with respect to some alternative policy
x′. The higher this loss, the more the agent regrets having played x. The alternative policy can be
defined in different ways, leading to different notions of regret. In the case of external regret, x′ simply
chooses the best fixed action in hindsight. Alternatively, in the case of internal regret, or swap regret,
x′ changes every occurrence of a given action ai to an alternative action aj . Note that these definitions
both assume that there exists a best action for each situation, whereas other RL algorithms only assume
that there is a best mix of actions. The latter might be more plausible given the stochastic nature of
many environments.

Another important characteristic of a RM algorithm is the amount of information that is available to
the agent. When the agent knows, in hindsight, the value of all its actions at each time step it is said to
have full information. In this case, it can calculate the loss for each individual action against the best
action in hindsight and update their probabilities accordingly. More often, however, the agent might only
have partial information, i.e., it only knows the reward for its previous action. The agent can now only
estimate the loss for this single action based on the history of actions and rewards so far, and update its
probability.

The RM algorithm used in this thesis is based on the assumptions of external regret and full infor-
mation. This means that at each time step all action probabilities are updated based on the action’s
loss with respect to the maximum reward in hindsight. Suppose the agent has taken action ai. It will
then receive reward ri as usual, but it will also get information about all other rewards rj it could have
received had it played differently. The agent can now calculate the loss l for each action based on the
maximum reward r∗ as li = r∗ − ri. A step size parameter λ controls the learning rate when updating
the weights w that are assigned to each action:

wi(t + 1)← wi(t) (1− λli(t + 1)) . (2.6)

The agent can now derive its new policy by normalizing the weights according to

xi(t) =
wi(t)

∑

j wj(t)
. (2.7)

As a result, the weight of actions that incurred a loss will decrease, and so will their probability of being
selected. On the other hand, the weight of the action that turned out to be the best in hindsight will
stay the same as its loss li = 0. This algorithm is known as the Polynomial Weights (PW) algorithm
(Blum and Mansour, 2007; Klos et al., 2010).

The limitations imposed by the assumption of full information might seem severe. Often, the agent
will not have access to all information. However, it has been shown that a full information external regret
algorithm can be converted to a partial information algorithm that still achieves a low regret (Blum and
Mansour, 2007).

2.3 Multi-agent reinforcement learning

Learning in a multi-agent setting is inherently more complex than in the single-agent case described in the
previous section. The learning problem can either become competitive, cooperative, or a combination of
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both. In a competitive environment the one agent’s success might mean the other agent’s failure, i.e., the
agents have different interests or goals. A cooperative environment on the other hand means that agents
have to work together to achieve some common goal. This makes it more difficult to specify the exact
goal of the learning process, since mere maximization of individual rewards might not lead to the best
overall solution. The exploration-exploitation dilemma also becomes more involved, since exploration is
not only necessary in the beginning to find the optimal action but remains important for a longer period
of time to account for changes in the reward function due to other agents’ changing policy. The fact that
the reward function may depend on the actions of other agents shows the most important characteristic
of multi-agent reinforcement learning (MARL): the environment is non-stationary and as a result each
agent is essentially pursuing a moving target (Busoniu et al., 2008).

This section describes how single-agent RL algorithms can be used in a multi-agent setting, by either
ignoring the other agents’ presence or by modeling it explicitly. Furthermore, an extension of Q-learning
that is especially suited to multi-agent coordination is introduced, as well as a recent modification resulting
from research on the evolutionary dynamics of Q-learning.

2.3.1 Single-agent learning in a multi-agent setting

Single-agent RL algorithms can also be applied to multi-agent learning, but not without consequences.
Two extreme approaches can be distinguished that deal with the problem of MARL: the joint action
space approach on the one hand and independent learning on the other (Tuyls and Nowé, 2005). Both
have their strengths and weaknesses.

In the joint action space approach the influence of one agent on all others is modeled explicitly. As
the name indicates, learning happens in the joint space of all agent’s action sets. As a result, the state
transition function is a direct mapping from a state and an action from each agent to a probability
distribution over the set of states S. This way, the current state still contains as much information as
the full history of states and the Markov property still holds. However, the joint actions space approach
ignores some of the basic principles of multi-agent systems: the need for complete information requires
free and instant communication, which is in general not feasible, and leaves no room for distributed
control.

The opposite approach is to use independent reinforcement learners. These agents have no way of
communicating with each other, and treat the problem as if no other agents were present. As a result, all
single-agent RL algorithms discussed in Section 2.2 can also be used by in a multi-agent setting. There is
however a major drawback. Since the feedback of the environment is dependent on the actions taken by
all agents, for an independent learner the environment is no longer stationary and the Markov property
does not hold anymore. This means that general proofs of convergence for the single-agent case can not
be applied to the multi-agent setting. Despite this lack of a strong theoretical framework, independent
learning has been shown empirically to produce good results (Busoniu et al., 2008; Tuyls and Nowé,
2005). Therefore, this thesis focuses on independent learners only.

2.3.2 Lenient Q-learning

Lenient Q-learning is a learning algorithm specifically tailored to cooperative multi-agent environments.
When multiple independent agents learn together in such an environment, it can often happen that they
converge to suboptimal solutions whereas a single agent might have no difficulty at all in finding the
optimum. One of the reasons is that the environment is unpredictable, since actions taken by other
agents influence both the rewards received and the state transitions that occur. For example, consider
two agents Ag1 and Ag2 learning to play soccer together, and assume they have no prior knowledge of
each other’s skill. It might very well happen that even a perfect forward pass by Ag1 is not rewarded
with a goal since Ag2 still lacks the skill or experience to deal with it properly. Using traditional RL
algorithms, Ag1 might decide that this is not a good pass (since there was no reward) and not play it
again. However, in doing so it completely ignores that fact that Ag2 is also still learning and might in
the future be able to score from that position. In this case, a possibly very highly rewarded combination
of actions might be lost because of initial errors made in the beginning. Had Ag1 shown some lenience
towards Ag2 it could have forgiven the early mistake, leading to more optimal behavior in the long run
(Panait et al., 2008).
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Leniency towards others can be achieved by having the agent ignore some low rewards and only
consider the highest of several samples. For example, the agent might always update its policy when an
action yields a higher reward than expected. When the reward is lower, it chooses probabilistically: in
the beginning it should show more lenience towards its teammates and ignore more low rewards, whereas
in the end it might be more critical and always update its policy (Panait, Sullivan, and Luke, 2006). A
more simple approach is to have the agent collect κ rewards for a single action before it updates the value
of this action according to the highest of those κ rewards (Panait et al., 2008). This results in a fixed
degree of leniency, expressed by the value of κ.

It has been shown that leniency can greatly improve the accuracy of an agent’s projection of the
search space in the beginning of the learning process (Panait et al., 2006). It thereby overcomes the
problem that initial errors by other agents might lead to suboptimal solutions in the long run. This
thesis considers a lenient version of the Q-learning algorithm described in Section 2.2.1, therefore referred
to as Lenient Q-learning (LQ).

2.3.3 (Lenient) Frequency Adjusted Q-learning

Recently, evolutionary dynamical models of Q-learning and Lenient Q-learning have been developed
with the intention to provide a more intuitive way to understand the behavior of reinforcement learning
(Tuyls et al., 2003b; Panait et al., 2008). However, it has been shown that the behavior of Q-learning de-
viates from the predictions of its evolutionary model, and that the behavior displayed by the evolutionary
model is in fact more desirable than the actual behavior of Q-learning. The source of this discrepancy
proved to be the fact that the Q-value update function is unbalanced: actions that are selected more
often, are also updated more often. The evolutionary model, on the other hand, assumes that all Q-values
are updated infinitely often, which is not the case in practice. This led to a modification of Q-learning,
in which an action’s Q-value update is inversely proportional to the probability with which that action
is selected. This modified Q-learning algorithm is called Frequency Adjusted Q-learning (FAQ) (Kaisers
and Tuyls, 2010).

Logically, it can be assumed that the same reasoning applies to Lenient Q-learning, since its evolu-
tionary model is derived in a way similar to the model of Q-learning. It is shown in this thesis that the
behavior of Lenient Q-learning indeed deviates from its evolutionary predication. Furthermore, a lenient
version of the FAQ algorithm, called Lenient Frequency Adjusted Q-learning (LFAQ), is proposed in this
thesis that adheres to the predictions of the evolutionary model of Lenient Q-learning in the same way
that FAQ adheres to the model of Q-learning. The mathematical details of both frequency adjusted
algorithms are presented in Section 4.2.

2.4 Related work

As mentioned earlier, the non-stationary nature of multi-agent environment violates the Markov property,
thereby rendering proofs of convergence for traditional RL algorithms inapplicable to the multi-agent
setting. As a result, several authors came up with modifications of standard RL techniques, such as
the LQ algorithm described in Section 2.3.2, or even new algorithms that are specifically designed for
multi-agent learning. This section provides an overview of some of these techniques. Note that these
algorithms are described here only to present a broader view on the field of MARL; they are not included
in the experiments performed in this thesis.

Kapetanakis and Kudenko (2002) present the Frequency Maximum Q (FMQ) technique, an extension
of Q-learning that modifies the agent’s action selection strategy. FMQ serves as a heuristic that is applied
to the Boltzmann policy update scheme (Equation 2.3). Instead of using the Q values directly to calculate
the policy, the FMQ heuristic uses expected values that depend also on the maximum reward r∗i for an
action received so far, the frequency f with which this maximum reward is encountered, and a weight c
that controls the importance of the FMQ heuristic:

EVai
= Qai

+ c ∗ f(r∗i ) ∗ r∗i . (2.8)

The authors show that agents using the FMQ heuristic are better able to coordinate their actions in
games where miscoordination is severely punished, such as the penalty game and the climbing game.
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Other authors have taken a different approach by designing new algorithms that are not based on
traditional RL techniques. An example is the work by Singh, Kearns, and Mansour (2000), in which the
authors use a gradient ascent algorithm (IGA, for Infinitesimal Gradient Ascent) to tackle the problem of
multi-agent learning. They are able to provide a proof of convergence for a restricted class of multi-agent
games, which is a rather interesting result since it is one of the first, albeit weak, convergence proofs for
a multi-agent learning algorithm (Bowling and Veloso, 2002).

This result is built upon by Bowling and Veloso (2002) who introduce the idea of a variable learning
rate. The idea is that an agent should adapt quickly when it receives low rewards, whereas it should be
more cautious when doing better than expected in order to keep doing well. This Win or Learn Fast
(WoLF) algorithm greatly depends on what constitutes ‘winning’. The authors define that an agent is
winning when it prefers its current policy over some known Nash equilibrium policy, otherwise it is losing.
They further provide a convergence proof for a combination of WoLF with the gradient ascent algorithm
(IGA-WoLF) that is strictly stronger than the initial proof given by Singh et al. (2000).

A generalization of the IGA algorithm is described by Zinkevich (2003). Where IGA only applies
to two-player games with two actions, the generalized IGA (GIGA) applies to games with an arbitrary
number of actions. However, both GIGA and its extension GIGA-WoLF have rather severe assumptions
with respect to the amount of information that is available to the agents. Both algorithms assume
knowledge of the underlying game, specifically its Nash equilibria. In most real-world situations this kind
of knowledge might not be available, which limits the practical applicability of these algorithms.

Abdallah and Lesser (2008) propose a Weighted Policy Learner (WPL) algorithm that follows the
same line of reasoning as the GIGA-WoLF algorithm but with less stringent information requirements.
Unlike (G)IGA-WoLF, WPL does not need any knowledge about the underlying game, such as the Nash
equilibria, a priori and is therefore better suited for practical implementation. The authors show that
WPL, despite its lack of prior information, performs on similar level as IGA-WoLF in several two-player
games. Moreover, when a larger number of agents are involved, WPL performs better than both GIGA
and GIGA-WoLF.



12 Reinforcement learning



Chapter 3

Evolutionary game theory

Game Theory (GT) is an economical theory that studies multi-player decision problems (Gibbons, 1992).
These problems typically arise when two or more players have to make a decision, thereby taking into
account not only their own but also the other players’ actions. Classical game theory assumes that full
information is available to the player, which together with the assumption of hyper-rationality does not
reflect the dynamical nature of most real world environments (Gintis, 2009). Evolutionary Game Theory
(EGT) was developed to overcome this limitation, by adopting the idea of evolution from biology to
describe how agents can learn to optimize their behavior without having complete information (Maynard
Smith and Price, 1973; Tuyls and Nowé, 2005). The theory provides a solid basis to study the decision
making process of boundedly rational players in an uncertain environment.

This chapter presents several basic concept from classical game theory, such as the Nash Equilibrium
and Pareto optimality. These concepts are then built upon to describe the basics of evolutionary game
theory. Most notably, the Replicator Dynamics are introduced, and their relation to Evolutionarily Stable
Strategies and the Nash Equilibrium is described. The theory of the replicator dynamics forms the bridge
between evolutionary game theory and multi-agent reinforcement learning. This connection is the topic
of Chapter 4.

3.1 Game theoretic background

Game theory models the interaction between players as a game, in which each player has a set of actions
to choose from. All players have to select an action simultaneously, upon which they receive a payoff that
depends on the combination of actions played. The goal for each player is to come up with a strategy
that maximizes its payoff in the game. It is assumed that the players are rational, in the sense that each
player tries to maximize its own payoff irrespective of the payoffs of the others (Gibbons, 1992).

Note that although the concepts used to describe game theory are very similar to those in multi-agent
learning, the terminology differs slightly. Where multi-agent learning deals with agents, environments
and policies, game theory involves players, games and strategies.

3.1.1 Games and strategies

In its most simple form, a game involves two players with two actions each, also denoted as a 2 × 2
game. It is this type of games that are studied in this thesis, however most concepts and ideas apply
also to the more general case of n-player games with arbitrary numbers of actions for each player. In the
normal-form representation of a game, each player selects an action simultaneously, and the combination
of actions played determines the payoff to each player (Gibbons, 1992).

Definition 1. The normal-form representation of a 2-player game specifies the players’ strat-
egy spaces S1, S2 and their payoff functions P1, P2 : S1 × S2 → ℜ. The game is denoted by G =
{S1, S2; P1, P2}.

A player’s strategy space S consist of all possible probability distributions over the player’s actions. In
the case of 2× 2 games, this entails S = {s = (x1, 1− x1) : x1 ∈ [0, 1]}.
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A well known example of such a game is the Prisoners’ Dilemma (Gibbons, 1992):

“Two suspects are arrested and charged with a crime. The police lack sufficient evidence
to convict the suspects, unless at least one confesses. The police holds the suspects in separate
cells and explain the consequences that will follow from the actions they could take. If neither
confesses then both will be convicted for a minor offense and sentenced to one month in jail.
If both confess then both will be sentenced to jail for six months. Finally, if one confesses
but the other does not, then the confessor will be released immediately but the other will be
sentenced to nine months in jail - six for the crime and further three for obstructing justice.”

In this game, the players each have the choice to cooperate (with each other, i.e., stay silent) or defect
(confess). For notational convenience, the negative payoffs (jail time) can be converted into positive
payoffs (reduced sentence with respect to the maximum penalty). The numbers can be chosen arbitrarily,
as long as they accurately represent the game’s intention. For example, Tuyls (2004) uses the values 5,
3, 1 and 0 to represent 0, 1, 6, and 9 months jail time, respectively. These payoffs can be replaced by
any combination T, R, P, and S (for temptation, reward, punishment, and sucker) as long as the relation
T > R > P > S holds. The options and corresponding payoffs to each player can be summarized in
matrix form, as in Figure 3.1. Matrix A has to be seen from the row perspective, and B from the column
perspective. For example, matrix A shows the payoff for the row player when playing either of the actions
Cooperate (C) or Defect (D) in the corresponding rows, where the payoffs then depend on the action of
the other player (and similarly so for matrix B).

A =
C
D

(

3 0
5 1

)

B =

C D
(

3 5
0 1

)

Figure 3.1: Payoff matrices for the Prisoners’ Dilemma, with the actions Cooperate (C) and Defect
(D). Matrix A defines the payoff for the row player, B for the column player.

These payoff matrices can conveniently be combined in the bi-matrix (A, B) as shown in Figure 3.2.
A bi-matrix can, just like a normal matrix, contain any number of rows and columns; “bi” just reflects
the fact that each cell contains two numbers: the payoffs for both players (Gibbons, 1992). Suppose the
row player plays action i and the column player plays j, then the bi-matrix (A, B) gives the payoffs Aij

to the row player and Bij to the column player.

C
D

C D
(

3, 3 0, 5
5, 0 1, 1

)

Figure 3.2: Bi-matrix representation of the Prisoners’ Dilemma, the first value in each cell represents
the payoff for the row player, the second value for the column player.

A strategy si ∈ S for player i in this game is now simply the choice between action C and D or, in
general, a probability distribution over both actions as defined above. The former is called a pure strategy,
the latter is a mixed strategy. Some strategies might be preferred over others, based on the expected
reward they entail. For example, in the Prisoners’ Dilemma, a rational player will always prefer the action
Defect over Cooperate, since no matter what its opponent does, it will always receive a higher reward
when playing Defect. Strategy D is said to strictly dominate strategy C, defined as follows (Gibbons,
1992):

Definition 2. In the 2-player normal-form game G = {S1, S2; P1, P2}, let si and s′i be feasible strategies
for player i. Strategy si strictly dominates s′i if, for every feasible strategy of the other player, i’s
payoff from playing si is strictly higher than its payoff from s′i.

A rational player will never play a strictly dominated strategy, since there is no believe it can hold
about the other player’s strategy such that this strategy would be optimal. As a result, in the one-shot
Prisoners’ Dilemma the outcome (D,D) will be selected by rational players, even though (C,C) would
yield a higher payoff for both players.
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3.1.2 Nash equilibrium

Related to the concept of strictly dominating strategies is the Nash equilibrium (NE). A set of strategies
for all players forms a Nash equilibrium if no single player can do better by playing a different strategy
(Gibbons, 1992).

Definition 3. In the 2-player normal-form game G = {S1, S2; P1, P2}, the strategy profile s = (s1, s2) ∈
S1 × S2 is a Nash equilibrium if s1 is the best response of player 1 to the strategy s2 played by player
2, and vice versa: P1(s1, s2) ≥ P1(s

′
1, s2) ∀s

′
1 ∈ S1 and P2(s1, s2) ≥ P2(s1, s

′
2) ∀s

′
2 ∈ S2.

For example, in the one-shot Prisoners’ Dilemma the outcome (D,D) is the only Nash equilibrium of
the game, even though both players would be better of playing (C,C). The reason is that in the latter case,
each player can increase its payoff by deviating and playing D. A Nash equilibrium does not necessarily
involve pure strategies, mixed Nash equilibria are also possible. John Nash (1950) proved that any finite
game (with a finite number of players and actions) has a Nash equilibrium.

A game can also have multiple Nash equilibria, which is illustrated by the Battle of the Sexes game
in Figure 3.3. In this game, a couple has to decide independently what they want to do in the evening.
They prefer to do something together, but the male (column player) would rather visit a fighting match,
whereas the female (row player) would rather visit the opera, as indicated by the payoff matrix. This
game has two pure Nash equilibria, (O,O) and (F,F), and a mixed Nash equilibrium where each plays
their preferred action with probability 1

3 .

O
F

O F
(

2, 1 0, 0
0, 0 1, 2

)

Figure 3.3: Payoff matrix for the Battle of the Sexes, with the actions Opera (O) and Fight (F).

3.1.3 Pareto optimality

The example of the Prisoners’ Dilemma in Figure 3.2 shows that a Nash equilibrium is not necessarily
the best outcome for all players, since (C,C) would yield a higher payoff to both players than the Nash
equilibrium (D,D). Similarly, in a game with multiple Nash equilibria, one might be preferred over the
others. The concept of Pareto optimality is used to capture this idea: an outcome is Pareto optimal if
no player can improve its payoff without reducing the payoff to any other player (Gintis, 2009; Tuyls and
Nowé, 2005).

Definition 4. In the 2-player normal-form game G = {S1, S2; P1, P2}, the strategy profile s = (s1, s2) ∈
S1 × S2 Pareto dominates another strategy profile s′ 6= s if, for all i, Pi(s) ≥ Pi(s

′) and there exists a
j such that Pj(s) > Pj(s

′).

An outcome is Pareto optimal if it is not Pareto dominated by any other outcome. In the Prisoners’
Dilemma, the outcome (C,C) is Pareto optimal and it Pareto dominates (D,D).

The Stag Hunt game (Skyrms, 2001) provides an example of a game with multiple Nash equilibria,
of which one Pareto dominates the others. First described by the 18th century French philosopher Jean-
Jacques Rousseau, the Stag Hunt involves two individuals that go out on a hunt. Each player must
choose to hunt either a stag or a hare, without knowledge of the other player’s choice. Hunting for a
hare is relatively easy, and the chance of getting a hare for one player is independent of what the other
player does. Capturing a stag is much more difficult, however, and can only be achieved if both players
cooperate. Furthermore, a stag is more valuable than a hare as it provides a bigger meal. Possible payoffs
for this game are given in Figure 3.4.

S
H

S H
(

4, 4 1, 3
3, 1 3, 3

)

Figure 3.4: Payoff matrix for the Stag Hunt game, with the actions Stag (S) and Hare (H).
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The Stag Hunt game has two pure Nash equilibria, (S,S) and (H,H), and one mixed equilibrium where
each player chooses to hunt for stag with probability 2

3 . However, only the outcome (S,S) is Pareto optimal
in this case. Interesting to note is that the equilibrium (H,H) provides a safe choice for both players,
since their payoff is independent of deviations by the other player. For that reason, the Nash equilibrium
(H,H) is therefore also called risk dominant, whereas (S,S) is called payoff dominant (Harsanyi and Selten,
1988).

3.2 Evolutionary game theory

Evolutionary Game Theory (EGT) originated in 1973 with the work of Maynard Smith and Price, who
applied game theory to biology (Maynard Smith and Price, 1973). At the time this idea seemed strange, as
game theory had always assumed hyper rationality and animals can hardly be said to fit this assumption.
To make his idea work, Maynard Smith made three important shifts from traditional game theory with
respect to the concepts strategy, equilibrium and player interaction (Gintis, 2009).

Strategy: instead of a player having a strategy set from which to choose, in EGT a population of
players has a strategy set (variations in genotype) of which individuals inherit one or another (possibly
mutated) variant which they then play in their strategic interactions.

Equilibrium: in EGT the Nash equilibrium is replaced by the concept of an evolutionarily stable
strategy (ESS). A strategy is said to be evolutionarily stable if a population playing that strategy can
not be invaded by a small group of mutants.

Player interaction: EGT replaces the one-shot interaction of classical game theory with a repeated
random pairing of players who play their inherited strategy. The corresponding payoffs to both players
determine their fitness, i.e., their reproductive success.

Important to note is that according to the above definitions, a population playing a mixed strategy can
be interpreted either as monomorphic, where each individual plays that mixed strategy, or polymorphic,
with a fraction of the population playing each of the underlying pure strategies (Gintis, 2009). Although
these two interpretations are often interchangeable, the polymorphic representation is preferred in this
thesis as it better captures the one-shot nature of the games studied.

3.2.1 Evolutionarily stable strategies

Suppose a population of individuals is playing a certain strategy, and this population is invaded by a
group of mutants playing a different strategy. Initially the mutants form only a small fraction of the whole
population. If the reproductive success of the mutant strategy is smaller than that of the original strategy,
the original strategy will survive and the mutant will disappear. The original strategy is then said to be
evolutionarily stable with respect to the invading mutant strategy. If a strategy is evolutionarily stable
against all possible mutant strategies, it is said to be an Evolutionarily Stable Strategy (ESS) (Gintis,
2009).

More formally, suppose a large population of players, i, plays the (mixed) strategy si. This population
is invaded by a small number of agents playing a different strategy s′i. The invaders initially have a
population share of ǫ ∈ (0, 1). When an individual is playing against a randomly selected opponent, its
probability of playing against a mutant is ǫ, and against a non-mutant 1− ǫ. This leads to an expected
payoff of P (si, (1− ǫ)si + ǫs′i) if the individual is a non-mutant, and P (s′i, (1− ǫ)si + ǫs′i) if it is a mutant.
An ESS is then defined as follows:

Definition 5. A strategy si is an evolutionarily stable strategy if, for all s′i 6= si and sufficiently
small ǫ > 0, P (si, (1− ǫ)si + ǫs′i) > P (s′i, (1− ǫ)si + ǫs′i).

As an example, it can be proven that the strategy Defect in the Prisoners’ Dilemma is an ESS.
Assume that in a population of Defectors, a small fraction ǫ ∈ (0, 1) mutates and becomes Cooperator.
The expected payoff for a Defector is now 5ǫ +1(1− ǫ) = 4ǫ+ 1, and for a Cooperator 3ǫ+ 0(1− ǫ) = 3ǫ.
Now, for all ǫ, 4ǫ + 1 > 3ǫ and therefore Defect is an ESS.

Although in this example the Nash equilibrium and the ESS of the game are the same, the concept
of ESS is actually a refinement of the NE. This is clear when looking at an alternative definition of an
ESS (Maynard Smith and Price, 1973):
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Definition 6. A strategy si is an evolutionarily stable strategy if and only if, for any mutant s′i 6= si,
the following conditions hold:

1. P (si, si) ≥ P (s′i, si), and

2. if P (si, si) = P (s′i, si), then P (si, s
′
i) > P (s′i, s

′
i).

The first property states that an ESS is a NE, and the second property is the refinement stating that if
the invading strategy does as well against the original strategy as the original strategy does against itself,
then the original strategy must do better against the invader than the invader does against itself. For
example, in the game shown in Figure 3.5, the strategy profile (B,B) is a NE, but is is not an ESS since
P (B, B) = P (A, B) and P (B, A) < P (A, A).

A
B

A B
(

1, 1 0, 0
0, 0 0, 0

)

Figure 3.5: Payoff matrix of a simple game example.

It is important to note that, where a Nash equilibrium is defined on a strategy profile s = (s1, . . . , sn),
an ESS is defined on a single strategy si. The concept of ESS therefore only applies to symmetric games,
i.e., games where the payoff only depends on the strategies played, not on who is playing them. That is,
a symmetric 2× 2 game conforms the payoff matrix depicted in Figure 3.6.

E
F

E F
(

a, a b, c
c, b d, d

)

Figure 3.6: General payoff matrix of a 2× 2 symmetric game.

Both the Prisoners’ Dilemma and the Stag Hunt game are symmetric, but the Battle of the Sexes is
not. However, it can be converted to a symmetric game by incorporating the type of player (in this case
male or female) in the actions, and assigning both types at the start at random to the players. A pure
action could then be defined as “xy”, meaning “if I am male, I play x, and if I am female, I play y”. The
symmetric version of Battle of the Sexes then has four pure strategies: OO, OF, FO, and FF (Gintis,
2009).

3.2.2 Replicator dynamics

In order to study the behavior of a population playing an evolutionary game, it is convenient to represent
this game as a dynamical system. At the basis of this evolutionary system are differential equations
that govern the rate of change of subpopulations playing a particular strategy. As mentioned above, it
is assumed here that individuals play only pure strategies, mixed strategies result when fractions of the
population play different pure strategies.

At the hart of any evolutionary process are selection and mutation. Selection is the process in which fit
individuals are selected for a next generation, whereas unfit individuals are discarded. Often this process
is represented by reproduction, where fit individuals have a higher chance of reproduction than the less
fit ones. Individuals that can reproduce by making (approximately) accurate copies of themselves are
called replicators (Gintis, 2009). A population then consists of a set of replicators that interact according
to some pattern. The process of change over time in the frequency distribution of the replicators is the
evolutionary dynamic of the population.

In the case of an evolutionary game, the replicators are the different pure strategies that are available,
and their reproductive success is defined by their payoff when playing against other pure strategies. At
each time step, a game is played by random pairing of two individuals in the population. Their respective
payoffs then determine their rate of replication. Note that this definition of an evolutionary game assumes
that the game is symmetric, as defined above (see Figure 3.6). In a two player game, this means that
payoff matrices A and B are related as A = BT , and therefore the payoffs can be represented by only
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matrix A for both players. This leads to the single-population dynamics as described below. The more
general case of multi-population dynamics is presented subsequently.

Single-population dynamics

Let p(t) be the total size of a population at time t, with p(t) =
∑

i pi(t) where pi is the number of
individuals in the population playing strategy si. The population state x is defined as (x1, . . . , xn),

where xi is the frequency of individuals playing strategy si. This implies that xi(t) = pi(t)
p(t) , and therefore

pi(t) = p(t)xi(t).
Now assume that the payoff for playing a certain strategy determines the rate of reproduction, and

that parents only live for one time step. The total number of individuals playing strategy si at time t+1
can then be computed by

pi(t + 1) = pi(t)P (si, x) (3.1)

where P (si, x) is the expected payoff for playing strategy si in a population with state x. The frequency
of individuals playing si at time t + 1 can then by calculated as

xi(t + 1) =
pi(t + 1)

p(t + 1)

=
xi(t)P (si, x)

∑

j xj(t)P (sj , x)
(3.2)

A full derivation can be found in Tuyls (2004). The rate of change can now be calculating using the
difference ∆xi(t) = xi(t + 1)− xi(t), and substituting 3.2:

∆xi(t) =
xi(t)P (si, x)

∑

j xj(t)P (sj , x)
− xi(t)

=
xi(t)(P (si, x)−

∑

j xj(t)P (sj , x))
∑

j xj(t)P (sj , x)

∆xi(t)

xi(t)
=

P (si, x)−
∑

j xj(t)P (sj , x)
∑

j xj(t)P (sj , x)
(3.3)

This system represented in Equation 3.3 is known as the discrete time Replicator Dynamics (RD) (Tuyls,
2004). The sum

∑

j xjP (sj , x) is the average payoff for the whole population, which for convenience will
be abbreviated as P (x, x). Equation 3.3 expresses that the rate of change in the frequency of a strategy
si is equal to the difference between the expected payoff for playing that strategy, P (si, x), and the
average payoff over all strategies,

∑

j xj(t)P (sj , x). If the strategy does better than average its frequency
increases, if it does worse it decreases.

The continuous time replicator dynamics can be found by considering time steps of length δ, and
calculating the limit as δ → 0, which yields

dxi

dt
=

xi(P (si, x)− P (x, x))

P (x, x)
(3.4)

The denominator has no influence on the qualitative behavior of the system, as the factor 1
P (x,x) is the

same for all xi. It can therefore be dropped from Equation 3.4, leading to the general form of the
replicator dynamic (Gintis, 2009; Tuyls, 2004):

dxi

dt
= xi(P (si, x)− P (x, x)) (3.5)

In a symmetric 2-player game with payoff matrix A, the expected payoff of strategy si against a population
with state x = (x1, . . . , xn) can be written as

P (si, x) =
∑

j

Aijxj = (Ax)i (3.6)
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and the average payoff of the whole population is

P (x, x) =
∑

i

xi

∑

j

Aijxj = xT Ax (3.7)

The replicator dynamic of Equation 3.5 can then be written as

dxi

dt
= xi[(Ax)i − xT Ax)] (3.8)

Remember that Equation 3.8 is only valid for symmetric games, where A = BT . The Prisoners’ Dilemma
and the Stag Hunt game are examples of such symmetric games. The next section describes the replicator
dynamic for asymmetric games.

Multi-population dynamics

In asymmetric games such as the Battle of the Sexes, the players can have different action sets and
payoff matrices, and therefore A 6= BT . The game is then said to be played by individuals of different
populations, hence the term multi-population dynamics. For simplicity, only the 2-player case is described
here. The two populations each have their own state vector, x = (x1, . . . , xm) for the population of player
1, and y = (y1, . . . , yn) for the population of player 2. The respective m× n payoff matrices are denoted
A and B.

The system of differential equations for player 1 can now be written as

dxi

dt
= xi[

n
∑

k=1

Aikyk −

m
∑

r=1

xr(

n
∑

k=1

Akryk)] (3.9)

where
∑n

k=1 Aikyk is the average payoff for player 1 when playing strategy si, and
∑m

r=1 xr(
∑n

k=1 Akryk)
is the average payoff over all sr ∈ S1 (Tuyls, 2004). Similarly, the system of equations for player 2 is

dyi

dt
= yi[

m
∑

k=1

Bkixk −

n
∑

r=1

yr(

m
∑

k=1

Bkrxk)] (3.10)

This system can be rewritten similar as in Equations 3.6 and 3.7, resulting in the following two-population
replicator dynamics:

dxi

dt
= xi[(Ay)i − xT Ay] (3.11)

dyi

dt
= yi[(Bx)i − yT Bx] (3.12)

Note that the two-population replicator dynamics reduce to single-population dynamics if A = BT , i.e.,
when the game is symmetric, and assuming that both populations start in the same state (x = y).

3.2.3 Relating NE, ESS and the RD

Now that the dynamics of an evolutionary game are known, it is interesting to relate the properties of these
dynamics to the (evolutionary) game theoretic properties defined earlier, such as the Nash equilibrium and
ESS. As Section 3.2.1 already indicated, the ESS concept is a refinement of Nash equilibria: ESS ⊆ NE.
This means that every ESS is also a NE, but the inverse is not true. The question is how the two concepts
of NE and ESS relate to the replicator dynamic derived in Section 3.2.2.

Central in the analysis of a dynamical system are its fixed points, or equilibria. A fixed point is defined
as a state x in which the system becomes stable.

Definition 7. The population state x∗ is a fixed point of the replicator dynamic if, for all i, dxi

dt
= 0.

In order to describe the behavior of a system around a fixed point, some definitions are needed.
Suppose a system is at a point x(0) at time t0. Then, the trajectory through x(0) is the combination of
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the collection of points through which the system passes as t→∞, and the collection of points through
which the system passes as t→ −∞.

For a point x, Br(x) is a ball of radius r around x, defined as the set of points y whose distance from
x is less than r, with r > 0. A trajectory x(t) approaches the fixed point x∗ if x(t)→ x∗ as t→∞, and
it ǫ-escapes x∗ if there is some t0 such that x(t) /∈ Bǫ(x

∗) for all t > t0. The set of points x(0) such that
the trajectory through x(0) approaches x∗ is called the basin of attraction of x∗.

It is now possible to say something about the stability of a fixed point x∗.

Definition 8. A fixed point x∗ is asymptotically stable if there is some ǫ > 0 such that for all
x(0) ∈ Bǫ(x

∗), the trajectory through x(0) approaches x∗.

If x∗ is not asymptotically stable, but there is a ball Bδ(x
∗) such that for all x(0) ∈ Bδ(x

∗) the
trajectory through x(0) does not ǫ-escape x∗, x∗ is called neutrally stable. If x∗ is neither asymptotically
nor neutrally stable, it is called unstable. Finally, if all points where the differential equation is defined lie
in the basin of attraction of x∗, the fixed point is called globally stable. For a more elaborate introduction
to these properties of a dynamical system, the interested reader is referred to Gintis (2009); for an
extensive description of dynamical systems in general see Hirsch and Smale (1974).

With these definitions in in mind it is now possible to formally define the relation between Nash
equilibria, ESS and the RD. Three important properties of this relation are (Gintis, 2009):

Property 1. Every Nash equilibrium is a fixed point of the replicator dynamics.

Property 2. If a fixed point of the replicator dynamic is asymptotically stable, then it is a Nash equilib-
rium.

Property 3. If strategy s is an ESS, then the population state x = s is an asymptotically stable fixed
point of the replicator dynamic.

These properties make it possible to make some qualitative statements about the equilibria of a game
by analyzing the corresponding replicator dynamics. Some examples are given in the next section.

3.2.4 Examples

The replicator equations (3.11 and 3.12) allow to plot the directional field corresponding to the dynamics
of an evolutionary game, by plugging in the payoff matrices A and B. Figure 3.7 shows the directional
field for the three games discussed earlier in this chapter. The arrows show the direction of change for
different points in the policy space. Since in a 2-action game x1 = 1 − x2, it suffices to plot only the
probability of the first action of each player. The probability with which player 1 plays its first action is
plotted on the x-axis, and the probability with which the second player plays its first action is plotted on
the y-axis.

For the Prisoners’ Dilemma, the field plot shows that all movement is directed towards (0,0), meaning
that both players play their second action, which is the Nash equilibrium (Defect, Defect). It is also clear
that that this equilibrium is asymptotically stable, since small perturbations of the equilibrium point will
lead back to the equilibrium. This shows that Defect is indeed an ESS, as shown in Section 3.2.1.

In the example of the Stag Hunt game, the field plot shows equilibria at (0,0), (1,1) and (2
3 , 2

3 ),
corresponding to the NE (H,H), (S,S), and a mixed equilibrium where both players play S with probability
2
3 . The mixed equilibrium is unstable, as small deviations will lead away from the fixed point. Therefore,
the strategy of playing S with probability 2

3 ) is not an ESS. It is also clear that (H,H) has a larger basin
of attraction than (S,S), which agrees with the fact that this risk dominant equilibrium is the safer choice
(see Section 3.1.3).

The field plot for the Battle of the Sexes shows that the mixed equilibrium, where both players play
their preferred action with probability 2

3 , is not an ESS. The other two Nash equilibria (O,O) and (F,F)
are equally attractive in general, as they have equal basins of attraction. However, the first player prefers
(O,O) whereas the second player prefers (F,F).

These examples show that the replicator dynamics are a useful tool to study evolutionary games. The
next chapter describes that they are equally useful in describing the behavior of reinforcement learners,
by linking evolutionary game theory to reinforcement learning.
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Prisoners’ Dilemma Stag Hunt Battle of the Sexes
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3, 3 0, 5
5, 0 1, 1
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3, 1 3, 3
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2, 1 0, 0
0, 0 1, 2
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Figure 3.7: Example of the replicator dynamics for three different games, with payoff matrices as defined
above. The values on the axis represent the probability with which player 1 (X) and player 2 (Y) play
their first action.
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Chapter 4

Relating evolutionary game theory
and reinforcement learning

This chapter describes the relation between reinforcement learning and evolutionary game theory. This
relation was first formalized by Börgers and Sarin (1997), who proved that the continuous time limit of
Cross learning, a specific reinforcement learning algorithm, converges to the replicator dynamics. Based
on their result, evolutionary models of various reinforcement learning algorithms have been constructed
(Tuyls et al., 2006; Panait et al., 2008; Klos et al., 2010).

Section 4.1 introduces the formal relation as described by Börgers and Sarin (1997), and summa-
rizes the models that have been derived for the four RL algorithms considered in this thesis. A recent
modification to Q-learning, based on its evolutionary model, is presented in Section 4.2. Furthermore, a
new extension of this modification to Lenient Q-learning is proposed. Finally, several advantages of the
evolutionary game theoretic approach to reinforcement learning are highlighted.

4.1 Evolutionary dynamics of reinforcement learning

Evolutionary game theory enables the construction and analysis of evolutionary models that describe the
dynamics of reinforcement learning. This section presents this relation formally, and describes recently
developed evolutionary models of the reinforcement learning algorithms studied in this thesis.

4.1.1 The formal relation: Cross learning

The formal relation between EGT and RL was first established by Börgers and Sarin (1997), based on a
RL algorithm known as Cross learning that originated from mathematical psychology. The policy update
rule of Cross learning is defined as

xi(t + 1)←xi(t)(1 − ri(t + 1)) + ri(t + 1) (4.1)

if ai is the action taken at time t or

xj(t + 1)←xj(t)(1 − rj(t + 1)) (4.2)

for all aj 6= ai

where ri(t+1) ∈ [0, 1] is the reward given for taking action ai at time t, as usual. The authors constructed
a continuous time limit of the two-player Cross learning model, in which the time interval between two
repetitions of the game is infinitesimally small, and the players’ adjustment to their policy decreases
in size accordingly. They proved that, under the assumption of frequent play and slow movement, this
continuous time limit converges to the replicator dynamics of Equations 3.11 and 3.12.

This result proved to be a very important step towards a new theoretical approach to reinforcement
learning in multi-agent games. Based on this formal relation, evolutionary models have been developed
of various RL algorithms, among which the ones studied in this thesis. These models are discussed in the
next sections.
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4.1.2 Q-learning

Tuyls et al. (2003b) derived an evolutionary model of Q-learning for two-player games, by calculating the
continuous time limit of the Boltzmann exploration function. They arrived at the replicator dynamics
presented in Equations 4.3 and 4.4. The mathematical details are omitted here, the interested reader is
referred to the original publication.

dxi

dt
=

αxi

τ
[(Ay)i − xT Ay] + xiα

∑

j

xj ln(
xj

xi

) (4.3)

dyi

dt
=

αyi

τ
[(Bx)i − yT Bx] + yiα

∑

j

yjln(
yj

yi

) (4.4)

Interesting to note is that the first term of these equations is similar to the replicator dynamics of Equa-
tions 3.11 and 3.12, with an additional weight factor α/τ that incorporates the step size and temperature
parameter of Q-learning. The first term represents the selection mechanism, that favors an action based
on the resulting payoff, relative to the average payoff of the population. The second term introduces mu-
tation, based on the difference in entropy between the action and the population as a whole (Tuyls et al.,
2003b). This selection-mutation scheme can be mapped to the exploration-exploitation dilemma, where
exploration relates to mutation and exploitation relates to selection. As a result, the evolutionary model
provides a different perspective to the exploration-exploitation dilemma.

4.1.3 Lenient Q-learning

Several ways exist in which leniency can be introduced in a learning algorithm, as explained in Sec-
tion 2.3.2. The most straightforward way to forgive mistakes is to collect several rewards for each action
before performing an update step. This update is then based on the highest of those collected rewards.
Panait et al. (2008) incorporated this modification in the evolutionary model of Q-learning described in
the previous section. This modification effects the selection term of the replicator dynamics, since leniency
influences the expected reward for an action, as well as the average expected reward of the population
as a whole. The expected maximum payoff for action ai over κ interactions is given by Equations 4.5
and 4.6, for both players. Substituting these for the normal reward matrices A and B in the replicator
dynamics leads to the evolutionary model of Lenient Q-learning presented in Equations 4.7 and 4.8.

ui =
∑

j

Aijyj
[(

∑

k:Aik≤Aij
yk

)κ

−
(

∑

k:Aik<Aij
yk

)κ]

∑

k:Aik=Aij
yk

(4.5)

wi =
∑

j

Bjixj
[(

∑

k:Bki≤Bji
xk

)κ

−
(

∑

k:Bki<Bji
xk

)κ]

∑

k:Bki=Bji
xk

(4.6)

dxi

dt
=

αxi

τ
(ui − xT u) + xiα

∑

j

xj ln(
xj

xi

) (4.7)

dyi

dt
=

αyi

τ
(wi − yT w) + yiα

∑

j

yj ln(
yj

yi

) (4.8)

Note that only the utilities of the actions for each player have changed compared to Equations 4.3 and 4.4.
Where for Q-learning the utility for action ai is simply the expected payoff given the other player’s policy,
e.g., (Ay)i and (Bx)i, for Lenient Q-learning the utility is represented by the expected maximum over κ
rewards given by ui for the first and wi for the second player.

4.1.4 Learning Automata

This thesis considers the Finite Action-set Learning Automata, as described in Section 2.2.2. Three
different variations exist, characterized by the values of the parameters α and β: LR−I , LR−P , and
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LR−ǫP . When applying the LR−I scheme, with α = 1 and β = 0, the update rules of Equations 2.4
and 2.5 reduce to

xi(t + 1)←xi(t) + ri(t + 1)(1− xi(t))

= xi(t)(1− ri(t + 1)) + ri(t + 1) (4.9)

if ai is the action taken at time t or

xj(t + 1)←xj(t)− ri(t + 1)xj(t)

= xj(t)(1 − rj(t + 1)) (4.10)

for all aj 6= ai

which equals the Cross learning model of Equations 4.1 and 4.2. Therefore, the relation between Cross
learning and the replicator dynamics carries over to learning automata as well, under these conditions
(Tuyls et al., 2006). The step size parameter α can be incorporated in the replicator dynamics as a weight
factor, which results in the following evolutionary model of the LR−I variation of FALA:

dxi

dt
= αxi[(Ay)i − xT Ay] (4.11)

dyi

dt
= αyi[(Bx)i − yT Bx] (4.12)

The step size parameter α influences the rate of change of this model without affecting its general behavior.
This modification is only necessary for a fair comparison between the different learners, as discussed in
Section 5.3.2. This variation of FALA is used throughout the remainder of this thesis.

4.1.5 Regret Minimization

The last RL algorithm considered in this thesis is the polynomial weights variation of regret minimization,
described in Section 2.2.3. Recently, an evolutionary model of this variation of regret minimization has
been derived, resulting in the following dynamics (Klos et al., 2010):

dxi

dt
=

λxi[(Ay)i − xT Ay]

1− λ[maxk(Ay)k − xT Ay]
(4.13)

dyi

dt
=

λyi[(Bx)i − yT Bx]

1− λ[maxk(Bx)k − yT Bx]
(4.14)

The replicators dynamics of Equations 3.11 and 3.12 can be recognized in the numerator; the denominator
represents a weight factor based on the expected loss. Again, the step size parameter of the learning
algorithm, in this case λ, determines the rate of change of the dynamical model.

4.2 Recent improvements

Apart from describing the behavior of reinforcement learning algorithms, an evolutionary model can also
be used to improve those algorithms (Tuyls et al., 2003a). It has been shown that the actual behavior
of Q-learning deviates from the evolutionary prediction based on Equations 4.3 and 4.4, and that the
predicted behavior is in fact more desirable (Kaisers and Tuyls, 2010). This led to an improved version of
the Q-learning algorithm, called Frequency Adjusted Q-learning (FAQ). This improvement is described
in the following section. Furthermore, the same improvement is proposed for Lenient Q-learning in
Section 4.2.2.

4.2.1 Frequency adjusted Q-learning

In general, a difference between the expected and actual behavior can occur when the step size of the
learning is large (Börgers and Sarin, 1997). However, Kaisers and Tuyls (2010) show that the discrepancies
observed in Q-learning remain when the step size is decreased. They argue that the cause of this difference
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by calculating the derivative of the action-value update function, and show that it differs by a factor xi

from the derivative used to construct the evolutionary model of Q-learning. This is caused by the fact
that the action-values in Q-learning are updated asynchronously: the value of an action is only updated
when it is selected. The evolutionary model, on the other hand, was derived under the assumption that
all actions are updated equally often (Tuyls et al., 2003b).

Kaisers and Tuyls (2010) further argue that the predicted behavior is more desirable than the actual
behavior of Q-learning. This lead them to construct an improved version of Q-learning, in which the
action-value update is weighted inversely proportional to the probability with which the action is selected:

Qai
(t + 1)← Qai

(t) +
1

xi

α

[

r(t + 1) + γ max
j

Qaj
(t)−Qai

(t)

]

(4.15)

However, this functions is only valid in the infinitesimal limit of α, as otherwise the fraction α/xi may
become larger than 1. This would violate the assumptions under which the algorithm converges (Watkins
and Dayan, 1992). In order for the algorithm to be numerically applicable, the authors defined a gener-
alized version of the frequency adjusted Q-learning algorithm, by introducing a variable β ∈ [0, 1):

Qai
(t + 1)← Qai

(t) + min

(

β

xi

, 1

)

α

[

r(t + 1) + γ max
j

Qaj
(t)−Qai

(t)

]

(4.16)

When β = 1, FAQ reduces to normal Q-learning; therefore this value is excluded from the allowed range
of β. Kaisers and Tuyls (2010) further show that the value of β controls the area of the policy space for
which FAQ is valid: if xi ≥ β, FAQ behaves optimally; if xi < β, FAQ reduces to regular Q-learning.
This is visualized in Figure 4.1, which shows the area of the reduced policy space (see Section 5.4) for
which FAQ is valid, based on the value of β.
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Figure 4.1: The area of the policy space for which FAQ is valid, based on the value of β.

Theoretically, this means the the range of β can be further narrowed, since it reduces the policy space
from both sides: 0 < β < 1

2 . Practically, β should be chosen as small as possible to ensure the validity of
FAQ for a large part of the policy space. Section 5.2.2 describes a different way of ensuring the validity
of FAQ, by using the Boltzmann exploration mechanism to reduce the reachable policy space.

Kaisers and Tuyls (2010) show empirically that the behavior of FAQ matches the evolutionary model
that was originally designed for Q-learning, whereas Q-learning itself deviates from it. Furthermore,
they show that FAQ is less sensitive to the initialization of the Q-values, whereas Q-learning behaves
differently depending on the initial action-values. The latter fact makes FAQ a robust choice for many
applications where correct initialization might be impossible.

4.2.2 Lenient frequency adjusted Q-learning

Since the action-value update rule for Lenient Q-learning is equal to that of normal Q-learning, its
behavior is similarly influenced by the asynchronous nature of the update rule. However, the evolutionary
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model of Lenient Q-learning, presented in Section 4.1.3, is based directly on the evolutionary model of
Q-learning (Panait et al., 2008). Therefore, the same discrepancies between predicted behavior and
actual behavior are expected. Figure 4.2 shows an example of the actual behavior of LQ (solid lines)
as compared to the evolutionary model (arrows) in the Stag Hunt game. Clearly, the actual behavior
differs from its expectation. Not only are the trajectories shaped differently, in several cases the learning
process even converges to a different equilibrium than expected.
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Figure 4.2: Example of the discrepancy between the actual behavior of Lenient Q-learning and the
evolutionary model.

This thesis proposes the Lenient Frequency Adjusted Q-learning (LFAQ) algorithm that makes use
of the same improvement as FAQ, described in Section 4.2.1. The action-value update rule of LFAQ is
equal to that of FAQ; the difference is again that the lenient version collects κ rewards before updating its
Q-values based on the highest of those rewards. Section 6.1 provides empirical proof that LFAQ indeed
matches the evolutionary model proposed by Panait et al. (2008).

4.3 Advantages of this approach

The evolutionary game theoretic approach to reinforcement learning, as described in this chapter, offers
some interesting insights into the inner working of reinforcement learning algorithms. Typically, when
applied to the area of multi-agent systems these algorithms are blackboxed in nature. Especially when
the number of agents and actions increases, the complexity of the learning problem prevents an easy
understanding of how a learner behaves, and why it behaves the way it does.

The replicator dynamics offer a solution to this problem. By deriving an evolutionary model of a
reinforcement learning algorithm, it becomes much easier to analyze and understand its behavior. It is
possible to predict the behavior and convergence of a learning process in advance, and easily compare
how different learners fare in the problem at hand. As a result, the EGT approach can also guide the
otherwise tedious task of parameter tuning, by allowing to analyze the effect that the various parameters
have on the learning behavior in advance.

Furthermore, this approach might also lead to the construction of new reinforcement learning algo-
rithms that are suited to solve specific problems. It has already been shown how the evolutionary model
of Q-learning led to an improvement of that learning algorithm. In a similar way, it is possible to define
preferred dynamics of a learning algorithm in advance by constructing an evolutionary model. Working
backwards, a learning algorithm can be derived that matches the preferred behavior. Tuyls et al. (2003a)
show how this procedure can be used to derive a learning algorithm that guarantees convergence in all
2× 2 normal form games.

These advantages highlight the strengths of the EGT approach to RL. Not only can this approach
lead to better insights into the behavior of RL algorithms, it can also point towards the creation of new
RL algorithms that are tailored to specific problems.
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Chapter 5

Methodology

The main goal of the experiments is to get an insight into the behavior and performance of various rein-
forcement learning algorithms. This insight is acquired in two ways. The first approach is to analyze the
policy trajectories of the learners, by running simulations with different starting points (initial policies)
and tracking how the learners’ policies evolve. These trajectories can be used to analyze various charac-
teristics of the learner, such as its behavior in different regions of the policy space, its learning speed and
the equilibria it might converge to. The second approach is to analyze learning behavior by looking at
the theoretical model of the learner; i.e., by looking at the associated evolutionary dynamics.

This chapter outlines the experimental setup of this thesis. A brief introduction to the different games
that are used as learning environment is given in Section 5.1. Each RL algorithm has various parameters
that need to be fine-tuned. These are described in Section 5.2. Section 5.3 discusses the experimental
setup, in particular the distinction between self play and mixed play. Finally, the tools used to analyze
the behavior, convergence properties and performance of the learners are detailed.

5.1 Testbed for the experiments

This section discusses the five games that are used as a testbed for the learning algorithms. All are 2× 2
normal form games, meaning that they are two-player games in which each player has to choose between
two actions. Several of these have already been introduced in Chapter 3.

Three distinct classes of 2 × 2 normal form games can be identified (Gintis, 2009). The first class
consists of games with one pure Nash equilibrium, such as the Prisoners’ Dilemma. The second class of
games has two pure and one mixed Nash equilibrium. An example of this class of games is the Battle of
the Sexes. Finally, the third class of games has only one mixed Nash equilibrium. An example of this
last class is the Matching Pennies game, which is introduced later in this section.

5.1.1 Games under consideration

Prisoners’ Dilemma

The Prisoners’ Dilemma (PD) has already been extensively studied in Chapter 3, for a detailed description
see Section 3.1.1. For convenience, the payoff matrix is presented again in Figure 5.1. The game’s only
Nash equilibrium (NE) is the strategy pair (D,D), leading to a reward of 1 for both players. The dilemma
in this case it that this NE is not Pareto optimal, since both players would be better off playing (C,C).
The strategy D is also an evolutionarily stable strategy (ESS), as explained in Section 3.2.1.

C
D

C D
(

3, 3 0, 5
5, 0 1, 1

)

Figure 5.1: Payoff matrix for the Prisoners’ Dilemma, with the actions Cooperate (C) and Defect (D).
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Battle of the Sexes

The Battle of the Sexes (see Section 3.1.2) is an example of the second class of games; its payoff matrix
is given in Figure 5.2. The game is characterized by two pure NE, (O,O) and (F,F), and one mixed NE
where each player plays its preferred action with probability 2

3 . The two pure equilibria are both also
ESS, the mixed equilibrium however is not. Furthermore, the two pure NE are not equally preferable by
both players: player 1 prefers (O,O), and player 2 prefers (F,F).

O
F

O F
(

2, 1 0, 0
0, 0 1, 2

)

Figure 5.2: Payoff matrix for the Battle of the Sexes, with the actions Opera (O) and Fight (F).

Stag Hunt Game

The Stag Hunt game, described in Section 3.1.3, also belongs to the second class of games. Its payoff
matrix is given in Figure 5.3. It has characteristics similar to the Battle of the Sexes: two pure NE, (S,S)
and (H,H), and one mixed NE where each player plays S with probability 2

3 . However, in this case both
players benefit most from playing (S,S), which is the Pareto optimal (or payoff dominant) equilibrium.
On the other hand, H is a risk dominant strategy since the payoff for playing H does not depend on the
action of the opponent. Therefore, also (H,H) has a considerable basin of attraction (see also Figure 3.7).

S
H

S H
(

4, 4 1, 3
3, 1 3, 3

)

Figure 5.3: Payoff matrix for the Stag Hunt game, with the actions Stag (S) and Hare (H).

Coordination Game

The Coordination Game is a modification of the Battle of the Sexes. Where in the latter both players
prefer a different equilibrium, in the Coordination Game they agree that going to the Opera is most
enjoyable. This is expressed in the payoff matrix as shown in Figure 5.4. The two pure NE are still (O,O)
and (F,F), but in this case (O,O) Pareto dominates (F,F). The mixed NE is that both players play O
with probability 1

3 . Similar to the Battle of the Sexes, both pure equilibria are also ESS, whereas the
mixed equilibrium is not.

O
F

O F
(

2, 2 0, 0
0, 0 1, 1

)

Figure 5.4: Payoff matrix for the Coordination Game, with the actions Opera (O) and Fight (F).

Matching Pennies

The last game under consideration is the Matching Pennies game. In this game, both players hold a coin
of one Euro (or, traditionally, a Pennie). They independently choose to show their coin with either its
head or its tail on top. If both players show a different side, player 1 gets both coins. If they show the
same side, player 2 gets both coins. The payoff matrix is shown in Figure 5.5. This is an example of the
third class of games, in which there is only one mixed Nash equilibrium: both players play each action
with probability 1

2 .
Interesting in this case is that this mixed equilibrium is not evolutionarily stable. This can be seen by

looking at the corresponding replicator dynamics, shown in Figure 5.6. These dynamics are obtained by
plugging in the game’s payoff matrices in Equations 3.11 and 3.12. The figure shows that the trajectories
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H
T

H T
(

−1, 1 1,−1
1,−1 −1, 1

)

Figure 5.5: Payoff matrix for the Matching Pennies game, with the actions Head (H) and Tail (T).

of dynamical system are closed orbits around the equilibrium, which violates the definition of asymptotic
stability (Definition 8). Therefore, the equilibrium is not an ESS (Property 3). However, the equilibrium
is neutrally stable, since each trajectory that starts sufficiently close to the equilibrium remains arbitrarily
close to it.
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Figure 5.6: Replicator dynamics of the Matching Pennies game.

5.1.2 Normalization

The payoffs for the different games described in the previous section are not limited to a specific range
of values. However, the value of the reward signal used by the RL algorithms can make a difference.
Some learners, such as FALA and RM, require that the rewards lie in the range [0, 1], as can be seen
by the formulation of their respective update functions. Therefore, normalization is required in order to
convert the payoffs to this range. For the variants of Q-learning presented in this thesis, the payoff values
are not limited to a specific range. Normalization can be applied in this case nevertheless, since the
Boltzmann action selection mechanism is insensitive to translation or multiplication of the Q-values, and
the Q-values in turn depend linearly on the payoffs received. As a result normalization has no influence
on the behavior of Q-learning.

Therefore, in order to ensure a fair competition, all game matrices are normalized before they are
used in an experiment. The normalization ensures that all payoff values are in the range [0, 1]. Figure 5.7
shows the normalized payoff matrices for the five games discussed in the previous section.

These normalized payoff matrices will be used in all experiments, as well as in the discussion of the
results. For example, in case a comparison is made between the reward earned by a learner and the
expected reward for a certain Nash equilibrium, implicitly the expected normalized reward is used.

5.2 Parameter settings

An important aspect of applying reinforcement learning algorithms, or most types of learning algorithms
for that matter, is parameter tuning. Each learning algorithm considered here has one or more parameters
that influence its behavior and that need to be set right in order for it to work properly. Some of these
parameters are unique to a specific learning algorithm, others are more general. For example, most
algorithms use a parameter to control the step size, or learning rate, of the learning process. Controlling
the learning rate is an important issue, as it can greatly influence the behavior of the learner.



32 Methodology

C
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C D
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3
5 , 3

5 0, 1
1, 0 1

5 , 1
5

)
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O F
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1, 1
2 0, 0

0, 0 1
2 , 1

)

S
H

S H
(

1, 1 0, 2
3

2
3 , 0 2

3 , 2
3
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Prisoners’ Dilemma Battle of the Sexes Stag Hunt
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O F
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1, 1 0, 0
0, 0 1

2 , 1
2

)

H
T

H T
(

0, 1 1, 0
1, 0 0, 1

)

Coordination Game Matching Pennies

Figure 5.7: Normalized payoff matrices for the five different games.

This section provides an overview of the various parameter settings used in this thesis. First, the
parameters controlling the learning rate are discussed in general, as well as in relation to the various RL
algorithms. Next, the more specific parameters that are unique to each learning algorithm are described.

5.2.1 General parameters

Each RL algorithm used in this thesis has some form of weight parameter that controls the influence that
the received reward has on the update of the policy or value function. This weight parameter can thus be
used to control the rate of change, or learning rate, of the learner. Increasing the learning rate speeds up
the learning process and might therefore lead to faster convergence. However, a larger learning rate makes
the learner respond more drastically to each reward update, which can in the end destabilize the learning
process. Eventually, the learner might not converge at all. A very small learning rate, on the other hand,
leads to smooth and predictable learning behavior. The time needed to converge can become very long
though, and whereas such a smooth and predictable learning trajectory can be interesting theoretically
it does not always reflect real-life situations since learning in a dynamic and changing environment often
needs to be quick. Therefore it is important to find the right balance between a quick learning process
on the one hand, and predictable behavior on the other.

Note that there is a difference between the terms learning rate and learning speed. The learning rate,
or step size, indicates the combination of parameter settings that control the size of the update step of a
learner. The learning speed indicates the size of the resulting policy change.

An overview describing the individual step size parameters of each RL algorithm is given in Table 5.1.

5.2.2 Algorithm specific parameters

Where the FALA and RM algorithms only use a step size parameter, the two Q-learning based algo-
rithms FAQ and LFAQ require some more fine tuning. They both share two additional variables: the
discount factor for future rewards γ and the temperature τ for the Boltzmann exploration mechanism.
Furthermore, LFAQ has a leniency parameter κ that controls the number of samples taken before doing
an update step.

Discount factor

The discount factor γ of Q-learning controls the importance of future rewards. If γ = 0, the agent is short
sighted and will only consider immediate rewards. When γ = 1, it is far-sighted and does not distinguish
between immediate and future rewards, given that no time related penalties are applied. Both extremes
are in general not favorable; the former ignores valuable information about what lies ahead, and the latter
can be inefficient since it does not favor the shortest path over any solution that eventually leads to the
goal.

In single-stage games such as the ones under consideration, the future reward is independent of the
action chosen and therefore the discount factor plays a lesser role. Suppose action i is chosen at time t.
The action-value function of Q-learning (Equation 2.2) can now be written as

Qi(t + 1)← Qi(t) + α [r(t + 1)−Qi(t)] + f(t) (5.1)
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Frequency Adjusted Q-learning

α, β The learning speed of FAQ-learning is not only dependent on step size parameters but changes
throughout the learning process, depending on the current policy (Kaisers and Tuyls, 2010).
As Equation 4.16 shows, the size of an action-value update is inversely related to the probabil-
ity xi with which this action is selected. The parameters α, β ∈ [0, 1] set the bounds between

which this variation occurs. In the equation, the learning rate is given by min
(

β
xi

, 1
)

α.

This means that when the action selection probability increases, the learning rate decreases
towards αβ; when the action selection probability decreases, the learning rate increases to-
wards α. Therefore, α and αβ are respectively the upper and lower bound of the learning
rate.

Lenient FAQ-learning

α, β, κ Lenient-FAQ learning has the same step size parameters as FAQ-learning. However, the de-
gree of leniency, κ, also plays a role. Because the learner collects κ rewards before performing
a single update step, the actual learning speed is κ times smaller than that of FAQ when
using the same values for α and β.

Learning Automata

α, β Learning automata (FALA) also use step size parameters α and β, be it with a different
meaning. As shown in Equations 2.4 and 2.5, α sets the effect that the reward r has on the
update step whereas β controls the effect of the penalty, which is defined as (1− r) where 1
is assumed to be the maximum possible reward. In this thesis, only the LR−I update scheme
is used, where β = 0, to assure that the learning process matches the RD model of Cross
Learning (see Section 4.1.4). Therefore, in this case only α is used to influence the learning
rate.

Regret Minimization

λ The learning rate of the Polynomial Weights RM algorithm is controlled by a single step size
parameter λ. This parameter defines the effect that an action’s loss l has on its concurrent
weight update (see Equation 2.6). It can therefore be seen as an analog of the parameter α
used in the other three learning algorithms, as it also determines the size of the update steps
of the learner.

Table 5.1: Overview of the step size parameters of each learning algorithm.

where f(t) is the expected future reward at time t, defined as

f(t) = αγ max
j

Qj(t). (5.2)

Rewriting the Boltzmann equation (2.3) for two-action games, separating the future reward f from the
action-value Q for action i gives

xi =
e(Qi+f)τ−1

e(Qi+f)τ−1 + e(Qj+g)τ−1
(5.3)

where g is the expected future reward at the time when action j was last selected. Equation 5.3 can be
rewritten as

xi =
eQiτ

−1

· efτ−1

eQiτ−1 · efτ−1 + eQjτ−1

· egτ−1
. (5.4)

Since the actions are not updated simultaneously, in general f 6= g and as a result the policy update does
depend on the future reward and therefore on γ. However, in the limit when α→ 0, f ≈ g and the future
reward cancels out in Equation 5.4, making the policy update independent of γ.
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Exploration temperature

Another important parameter of the Q-learning algorithms under consideration is the temperature τ
that, through the Boltzmann exploration mechanism of Equation 2.3, controls the balance between ex-
ploration and exploitation. A high temperature promotes exploration whereas a low temperature favours
exploitation. As a result, τ also controls the area of the policy space that is reachable by the learning
process, since it places a bound on the minimum action selection probability that is possible. Following
Equation 2.3, for a single-stage two-action game,

xmin =
eQmin·τ−1

eQmin·τ−1 + eQmax·τ−1
. (5.5)

The value of Qmin, and similarly of Qmax, can be calculated by the following formula (Kaisers and Tuyls,
2010):

Qmin =
∞
∑

t=0

γtrmin =
1

1− γ
rmin. (5.6)

For discount factor γ = 0 and rewards r ∈ [0, 1] this leads to Qmin = 0 and Qmax = 1, and as a result

xmin =
1

1 + eτ−1
. (5.7)

This insight can be used in FAQ and LFAQ to select β in such a way that xi ≥ β is guaranteed, which
ensures the validity of (L)FAQ for the whole reachable policy space, as explained in Section 4.2.1.

Leniency

The degree of leniency κ in LFAQ sets the number of rewards that are collected before an update step is
performed based on the highest value of those rewards. The higher κ, the more lenient, or forgiving, an
agent is towards possible mistakes made by the other agents in a cooperative game. When κ = 1, LFAQ
reduces to regular FAQ. Panait et al. (2008) investigate the behavior of lenient Q-learning for different
settings of κ and show that leniency indeed improves the convergence properties. In accordance with
their results, this thesis uses κ = 5 unless otherwise specified.

5.3 Experimental setup

This section introduces the experiments that are conducted in this thesis. The general outline of the
main experiments is given, as well as of the more specific experiments to fine-tune the learning rate. The
next section presents the analytical tools that are used to present the results.

5.3.1 Self play versus mixed play

A distinction can be made between experiments that involve two agents using the same learning algorithm,
and those that involve agents using different learning algorithms. The first case of homogeneous or self
play experiments serves as a base line for the more advanced heterogeneous, or mixed play, experiments.
All analysis tools described in this section can be used for either form of experiments.

The self play experiments analyze homogeneous pairs of the four different learning algorithms FAQ,
LFAQ, FALA and RM in the five different games that are described in Section 5.1.1. This amounts to a
total of 4× 5 = 20 different situations.

The mixed play experiments are more extensive, with pairwise coupling of the different learning
algorithms. The self play results for each learner are used as a base line in order to compare the different
combinations of learners.

5.3.2 Fine-tuning the learning rate

Analyzing the learning speed of the various RL algorithms is important in two ways. First of all, the
learning rate needs to be tuned in such a way that the learners behave reliably, without slowing down
the learning process more than necessary. Secondly, when two different learners oppose each other in a
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single game it might be that they do not learn equally fast. This can lead to artifacts caused by the mere
difference in learning speed rather then a true differentiation in qualitative learning dynamics. Therefore,
it is necessary to analyze how the different step size parameters relate, i.e., which settings lead to similar
learning speeds for different learners, in order to elicit the underlying qualitative differences.

The first part of the analysis, i.e., finding the balance between speed and predictability, is achieved
by means of two different analytical tools. The first one shows the convergence properties of the learning
process over the policy space, by calculating the region of the policy space for which convergence is
guaranteed. Doing this for various learning rates gives an insight into the reliability of the convergence
of the learning process for those specific settings. The second tool shows the behavior of the learners,
looking in more detail at the predictability of the actual learning trajectories. Sections 5.4.1 and 5.4.2
describe these analytical tools in detail. Together they can be used to justify which step size gives reliable
experiments.

The second part, relating the learning rate to the actual learning speed, is achieved by measuring
the average time to convergence for the different algorithms and settings. Although the learning speed
might vary over the trajectory, the time needed to reach an equilibrium still gives a good indication of
the overall learning speed of an algorithm. These results are used to match the learning speeds of the
different learners, thereby providing a fair competition in the heterogeneous learning experiments.

5.4 Analytical tools

In order to investigate the behavior, convergence properties and performance of the different RL algo-
rithms, experiments are conducted with various parameter settings and initial policy profiles. This section
outlines in detail the various analytical tools used in these experiments. These tools are grouped by their
goal, i.e., whether they put emphasis on the behavior, the convergence properties, or the performance of
the learners.

An important aspect of the games under consideration is the fact that they are all two-player games
with two actions for each player. Therefore, the action selection probabilities that make up an agent’s
policy are directly linked by the fact that

∑

i xi = 1 and therefore, with only two actions, x1 = 1−x2 and
vice versa. This makes it possible to reduce the policy pair (x, y) to (x1, y1) without loss of information.
This reduced policy pair can easily be plotted in the unit square, making it easy to analyze policy
trajectories, for example. Plotting this reduced policy pair is an important aspect of most of the tools
described in the remainder of the section.

5.4.1 behavior analysis

Insight into the behavior of the learners can best be acquired by looking at how the learner’s policies evolve
over time. This can be done both by simulating the learning process, and by analyzing the corresponding
replicator dynamics. This section describes several tools that are used to present the results.

Policy trajectory plot

A policy trajectory plot can be created by recording the agents’ changing policies over time, and subse-
quently plotting x1(t) against y1(t) in the reduced policy space as described above. This can be done for
different initial policies in order to get a better insight into the behavior of the learners in different areas
of the policy space. With increasing step size these trajectories become less certain, in which case the
average trajectory of several simulations is plotted. Which situation applies is indicated when describing
the experiment.

Standard deviation plot

The policy trajectory plot shows either a single trajectory or the average over multiple simulation runs.
In order to get a better idea about the uncertainty of the trajectories the standard deviation over multiple
runs with the same initial policy can be calculated and plotted. The standard deviation σ of a given time
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step t on the trajectory is calculated as

σ(t) =

√

√

√

√

R
∑

r=1

[xr
1(t)− µx1

(t)]2 + [yr
1(t)− µy1

(t)]2

R
(5.8)

where R is the number of runs, xr
1(t) is the value of the rth run of x1 at time t, and µx1

(t) is the average
value of x1 at that point. The same goes for y. The standard deviation plot can for example be used to
compare the (un)certainty of the learning process for various step sizes.

Convergence speed comparison

Convergence speed plots are used to compare the learning speed of various algorithms over time. At
each time step t, the Euclidean distance d of the policy pair (x1(t), y1(t)) to the equilibrium (x∗, y∗) is
calculated by

d(t) =
√

(x1(t)− x∗
1)

2 + (y1(t)− y∗
1)

2

. (5.9)

Now, setting one learner as base line, the relative speed of the other learners can be plotted as the
difference between their distance to the equilibrium and that of the base line learner. Comparing the
convergence speeds in this way shows whether the learners behave differently throughout the learning
process; it might for example be that a learner is relatively fast in the beginning of the process, but slow
at the end. Such insights can be valuable when deciding on a learning algorithm for a certain application
domain.

Directional field of the replicator dynamics

The directional field plot of the replicator dynamics is the theoretical model to which the individual
simulated policy trajectories converge in the limit. Therefore, it is a valuable tool to assess whether the
learning process behaves as expected. Furthermore, it can be used to fine tune some of the learning
algorithm’s parameters in advance, before the actual simulation is carried out. For example, the effect
of the temperature τ on the behavior of FAQ and LFAQ is immediately visible through the replicator
dynamics.

Plotting the RD field is done in a way similar to the policy trajectory plots, be making use of the
reduced policy space. The direction of the field is plotted as uniformly spaced arrows, their length
indicating the rate of change. The similarity of the RD plot and the policy trajectory plot also makes
it possible to plot both at the same time, giving an even better idea whether the learners behave as
expected. This latter application is especially useful when validating the LFAQ algorithm in Section 6.1.

5.4.2 Convergence properties

Next to the general behavior of the learning algorithms, the convergence properties are also studied in
detail. When do the learners converge, where do they converge to for a specific initial policy, and how
long does it take? Three main tools are used to study these properties.

ǫ-Convergence

The most important question regarding convergence is: when does the learning process converge? The
most simple answer is to measure at what point the policy pair of the learners has converged to the (Nash)
equilibrium of the game. However, exact convergence to the equilibrium can take a very long time, if
it happens at all. This is do to the fact that each algorithm’s learning rate, by way of construction,
slows down as it approaches the equilibrium. Therefore, instead of exact convergence the concept of
ǫ-convergence is used. In order to use this concept, a measure for the distance between two policies is
needed. In accordance with Van den Herik et al. (2007) the distance between policy x and a fixed policy
y is defined as

d(x, y) = max
i
|xi − yi|. (5.10)

Then, a policy x is considered to have ǫ-converged to y at time step T if

d(x(t), y) < ǫ, ∀t ≥ T . (5.11)
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Consequently, the learning process is considered to have ǫ-converged to an equilibrium if all learners’
policies have ǫ-converged to this equilibrium.

This measure of convergence is chosen for its intuitive meaning: a learning process has converged if
all agents’ action probabilities deviate less than ǫ from their desired value. It is used to determine to
which equilibrium the learners converge, and at what time step T they do so.

Convergence pureness plot

Using the aforementioned convergence measure, it is possible to construct a gradient field showing the
convergence pureness of the learning process over the policy space. This gradient field is constructed by
dividing the policy space in a grid, and simulating the learning process starting at each grid cell. By
running several simulations for each cell, with uniformly distributed starting points, the percentage-wise
convergence to the different equilibria can be determined. The cell’s pureness p is defined as

p =
maxi ci
∑

j cj

(5.12)

where ci is the number of simulation runs that converged to the ith equilibrium of the game.

To achieve a high resolution gradient field, a large number of simulations is required. To partially
overcome this problem, the field can be gradually refined. Starting with a low resolution, the whole
field is constructed once. Next, the resolution is increased, but only in the areas that where uncertain
in the previous step. Especially when the learning process is relatively pure, or certain, the number of
simulations required to achieve a reasonable resolution is significantly reduced by this gradual refinement
method.

The convergence pureness plot is particularly useful for fine tuning the learning rate as explained
in Section 5.2.1. Gradient fields can be constructed for different step sizes to show at which point a
satisfactory level of certainty is reached, by calculating the percentage of the policy space for which
convergence is certain.

Basin of attraction

As defined in Section 3.2.3, the basin of attraction of an equilibrium is the collection of points through
which the learning trajectory will eventually converge to that equilibrium. The directional field plot of
the replicator dynamics already indicates where each basin of attraction might be located, by looking at
the arrows pointing towards an equilibrium. However, this visual analysis is limited to the number of
arrows that can reasonably be plotted, and therefore a more exact method is required.

Using the replicator dynamics it is possible to calculate the basins of attraction in a given game with
arbitrary precision. First, the policy space is divided in a grid with a certain resolution, say 100×100. This
resolution can be chosen arbitrarily, depending on the required accuracy and the available computation
time. For simplicity, each grid cell is represented as its center point only. Next, for each grid point the
direction of the replicator dynamics is calculated. These directions are then used to calculate a path,
from each grid point, to some equilibrium. The starting cell of this path is then assigned to the basin of
attraction of that particular equilibrium. This procedure can be carried out incrementally, in which case
a path ends at the first cell for which the basin of attraction is already known. It is also possible that a
path never ends at an equilibrium. In that case, at some point the same cell will be visited twice, and
all cells in that path are excluded from any basin of attraction.

In the end, all grid cells are assigned either to a basin of attraction, or excluded from it. The basins
of attraction can then be visualized by plotting their border, and the percentage of the policy space lying
within a basin of attraction can be calculated easily.

5.4.3 Performance analysis

The performance of a RL algorithm is by definition related to the reward received during game play, as
the learner’s goal is simply to maximize its reward over time. Therefore, the most straightforward way
to measure a learner’s performance is by looking at its cumulative reward.
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Average reward plot

The cumulative reward R of a learner can be calculated by summing all consecutive rewards received
during the learning process. However, is is often more interesting to look at the average reward R̄ over
time, where R̄ at time T is defined by

R̄(T ) =

∑T

t=1 r(t)

T
. (5.13)

Plotting the average reward over time gives an insight into how quick the learner improves its policy and
at what point it reaches an equilibrium. It can also be used to compare different learners qualitatively;
especially in the case of mixed learners it can be used to show which learner is more efficient before
reaching equilibrium.



Chapter 6

Results

As indicated in Chapter 5, several different sets of experiments are performed in order to analyze the
behavior, convergence properties en performance of the reinforcement learning algorithms under consid-
eration. This chapter presents the results.

The remainder of this chapter is divided in four parts. The first part, Section 6.1, highlights the
difference between regular Lenient Q-learning and the newly proposed Lenient Frequency Adjusted Q-
learning, and demonstrates that the latter perfectly adheres to the evolutionary predictions whereas
LQ may deviate considerably. Section 6.2 is devoted to fine tuning the step size parameters of the
different learning algorithms. This fine tuning is needed in order to ensure reliable results and a fair
competition, especially in a heterogeneous setting. Sections 6.3 and 6.4 present the homogeneous (self
play) and heterogeneous (mixed play) analysis of the different learning algorithms, respectively. The
chapter concludes with a summary of the main results.

6.1 Validating Lenient FAQ-learning

In this section, Lenient Q-learning and Lenient FAQ-learning are compared with the evolutionary model
derived by Panait et al. (2008), in order to investigate whether frequency adjustment indeed resolves the
discrepancies observed between the predicted and actual behavior of Lenient Q-learning. Furthermore,
the advantage of leniency in cooperative games is illustrated by an example, showing that an increase in
leniency raises the probability of converging to the Pareto optimal equilibrium.

6.1.1 Comparing LQ, LFAQ, and the evolutionary model

The behavior of Lenient Q-learning (LQ) and Lenient FAQ-learning (LFAQ) are compared, in order to
investigate empirically whether LFAQ better matches the behavior predicted by its replicator dynamics.
This is done by comparing the learners’ policy trajectories with the directional field of the evolutionary
model in various games. As explained in Section 4.2.2, the policy trajectories of LQ deviate from their
expected path in a way similar to those of Q-learning. By introducing an extra term in the action-value
update rule that compensates for the frequency with which an action is chosen, LFAQ aims to counter
this deviation.

In order to be comparable to Kaisers and Tuyls (2010), who investigate the discrepancy in the case
of Q-learning, a similar setup is used for the experiments. Three games are selected that represent
different classes: the Prisoners’ Dilemma with one pure Nash equilibrium; the Stag Hunt with two stable
pure Nash equilibria and one mixed equilibrium; and the Matching Pennies game with one mixed Nash
equilibrium. Of particular interest is the Stag Hunt, which has one pay-off dominant equilibrium and one
risk-dominant equilibrium. The concept of leniency was introduced specifically to improve convergence
to such a pay-off dominant Nash equilibrium in cooperative games.

As observed by Kaisers and Tuyls (2010), different initializations of the Q-values result in differences
in the learning behavior of Q-learning. Since LQ is a direct extension of Q-learning, a similar effect is
expected. Therefore, experiments include different initializations of the Q-values, based on the minimum
(pessimistic), mean (neutral), and maximum (optimistic) possible Q-values given the game’s reward
space. The minimum, and similarly the mean and maximum value, can be found using Equation 5.6.
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Figure 6.1: Overview of the behavior of Lenient Q-learning and Lenient FAQ-learning in different
games. The figure shows different initialization settings for the Q values: pessimistic (left), neutral
(center) and optimistic (right). The arrows represent the directional field of the evolutionary model
derived by Panait et al. (2008).
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Figure 6.1 shows several policy trajectories of both LQ and LFAQ for the three different games and
initialization settings. The directional field of the evolutionary model is depicted as well. Both learners
use τ = 0.1, γ = 0.9 and κ = 5. A learning rate of 10−5 is chosen in order to obtain predictable behavior;
with the given value for κ this relates to α = 5 · 10−5 for LQ, and α = 5 · 10−2 and β = 10−3 for LFAQ.

These results show that the behavior of LQ indeed depends on the initial Q-values. This leads to
considerable differences in behavior and convergence properties of the learner. For example, the neutral
and optimistic initialization in the Prisoners’ Dilemma lead to non-convergence, at least not to the pure
Nash equilibrium. The same holds for the pessimistic and neutral initialization in the Matching Pennies
game, where the learning trajectories spiral outwards and away from the equilibrium. In the Stag Hunt
game, LQ converges to either one of the equilibria depending on the initial settings. LFAQ on the other
hand is more robust; its behavior is relatively independent of the initialization. In each of the examples
it converges to the game’s Nash equilibrium, and in the Stag Hunt game all learning trajectories indeed
converge to the pay-off dominant Nash equilibrium, which is the Pareto optimum of the game.

Comparing the learners’ trajectories to the evolutionary model, it is clear that LQ deviates from the
expected path in most scenarios, whereas LFAQ shows behavior consistent with the predicted dynamics.
The two learning algorithms behave most similar in the Stag Hunt and Matching Pennies game with
optimistic initial Q-values. However, in many applications the rewards are not known in advance, which
makes the selection of proper initial values infeasible. This makes LFAQ a better choice than LQ, as
its behavior does not depend on the initialization and is consistent with the preferable dynamics of the
evolutionary model derived by Panait et al. (2008).

6.1.2 Advantage of leniency in cooperative games

Leniency is a concept specifically suited to cooperative games. It was introduced to overcome the problem
that initial mis-coordination may lead to suboptimal convergence (Panait et al., 2006). This advantage
can be illustrated by comparing the dynamics of Lenient FAQ for different degrees of leniency. Figure 6.2
shows the dynamics of LFAQ in the Stag Hunt game for various values of κ; the scenario where κ = 1
corresponds to the non-lenient FAQ algorithm. This example demonstrates that a higher degree of
leniency leads to a larger basin of attraction for the Pareto optimal equilibrium of the game, which is at
(1, 1). In the limit, the basin of attraction consumes the whole strategy space, which indicates that the
probability of converging to the optimal solution can be raised arbitrarily close to 1 by increasing the
value of κ.
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Figure 6.2: The dynamics of Lenient Frequency Adjusted Q-learning in the Stag Hunt game with
varying degree of leniency. The line indicates the border between the two basins of attraction for the risk
dominant equilibrium at (0, 0) and the payoff dominant equilibrium at (1, 1).

These results illustrate the claim of Panait et al. (2008) that “properly-set lenient learners are guaranteed
to converge to the Pareto-optimal Nash equilibria in coordination games”. Moreover, the previous section
demonstrated that LFAQ indeed matches the evolutionary model on which this claim was based; therefore
LFAQ inherits the theoretical guarantees from the evolutionary model.
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6.2 Fine-tuning the learning rate

The learning rate of the investigated RL algorithms needs to be fine tuned in two ways, as explained
in Section 5.2.1. First of all, the right balance has to be struck between predictability of the learner on
the one hand, and its speed of convergence on the other. Secondly, the relation between an algorithm’s
learning rate and its respective step size parameters needs to be investigated. Knowledge of this relation
can be used to make sure that opposing learners converge comparably fast, thereby ensuring a fair
competition. Experiments are conducted to find an answer to both problems; this section presents the
results.

6.2.1 Predictability of the learning behavior

As discussed previously, a larger step size leads to a faster learning process but also to larger deviations
in learning behavior. A large step size may even cause the learning process to become unstable. A very
small step size on the other hand increases the time needed for the learner to converge, which is infeasible
in practice.

In order to analyze the behavior of the different RL algorithms with varying step size, a gradient field
is constructed that shows the convergence pureness over the policy space (see Section 5.4.2). This gradient
field is defined as a grid over the policy space, where the convergence pureness, or certainty, is calculated
for each cell by simulating the learning process several times, with uniformly distributed starting points
within the grid cell, and investigating to which equilibrium the algorithm converges. In order to reduce
the number of simulations needed, this gradient field is gradually refined by increasing the resolution
only in those parts of the policy space that are still uncertain. Figure 6.3 shows how the resolution of
a gradient field is step-wise increased. These gradient fields show the convergence pureness, averaged
over 100 simulations for each grid cell, of FAQ-learning in the Stag Hunt game with α = β = 0.01,
τ = 0.01 and γ = 0. White areas indicate complete certainty with respect to the equilibrium the learner
will converge to, whereas darker areas indicate increasing uncertainty; black indicates a 50/50 chance of
converging to either one of the pure equilibria.

x
1

y
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

5× 5 grid 10× 10 grid 20× 20 grid 40× 40 grid

Figure 6.3: Gradual refinement of convergence pureness gradient fields in the Stag Hunt game using
FAQ-learning. White areas are certain, black areas are uncertain.

To illustrate the meaning of these results, Figure 6.4 shows the directional field of the evolutionary model
for the same game and learning algorithm. The figure shows that the region of uncertainty indicated by
the gradient field matches the border between the two basins of attraction in this game.

Figure 6.5 shows the convergence pureness gradient fields of FALA for different step sizes α in Battle
of the Sexes. The convergence pureness is averaged over 100 simulations for each grid cell (10 for
α = 0.001). This example illustrates how the convergence pureness relates to the step size that is used in
the learning algorithm. It is clear that a larger step size results in a larger area of uncertainty, where the
learning process may converge to either equilibrium. When the step size decreases the area of uncertainty
decreases. As can be seen, for α = 0.001 only the border between the two basins of attraction is uncertain.
This area consists almost entirely of grid cells that overlap the border, which will therefore always remain
uncertain. However, the area can be made arbitrarily small by increasing the resolution.

The results of the convergence pureness experiments are summarized in Table 6.1. The table shows
the percentage of the policy space for which convergence is certain for each of the learning algorithms
in three different games. The choice of games is based on the fact that these all have more than one
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Figure 6.4: Replicator dynamics of FAQ learning in the Stag Hunt game.
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Figure 6.5: Gradient field comparison of the convergence pureness of FALA in Battle of the Sexes using
different learning rates. Grid resolution is 40× 40.

equilibrium, which is required for the concept of convergence pureness to make sense. The table also
shows the average percentage over these three games. Several step sizes are taken into account, indicated
by the value of α in the table. Note that for notational convenience the step size parameter λ of RM is
assumed to be equal to α in this case. The other parameters are β = τ = 0.01 and γ = 0 for FAQ and
LFAQ, and κ = 5 for LFAQ. Simulations are run for a maximum of 100 · α iterations (500 · α for LFAQ)
or until the learning process has ǫ-converged to an equilibrium with ǫ = 10−4 (see Section 5.4.2). In
practice almost all simulations converged well before the maximum number of iterations was reached, the
only exception being LFAQ in the Stag Hunt game, with α = 0.1. In this case, 98.4% of all simulations
converged.

The table (6.1) shows that the predictability of the learning process indeed increases with a decreasing
step size. A step size of 0.1 in these games is clearly too large, since only little over 50% of the policy
space is certain. With a step size of 0.01 the area of certainty increases to around 83%, and when the step
size is 0.001 over 97% of the policy space is certain. Important to note is that by way of construction an
overal certainty of 100% is infeasible, since there will always be grid cells overlapping the border between
the basins of attraction. For example, in the Battle of the Sexes the border is on the diagonal, meaning
that 40 cells will overlap the border when a resolution of 40 × 40 is used. As a result, the maximum
percentage of certainty will be around 100− 40

1600 · 100 = 97.5%, which is similar to the results obtained
using a learning rate α of 0.001.

Interesting to note is that the RM algorithm already shows a reasonable certainty overall with a large
step size. LFAQ behaves more predictable than FAQ and FALA in the Stag Hunt and Coordination
Game, where one equilibrium is preferred over the other. The gradient fields show that in these games
the LFAQ learner indeed converges with higher certainty to the preferred equilibrium. This demonstrates
again that leniency towards the other player in cooperative games results in a higher performance. The
differences between the learning algorithms diminish when the learning rate decreases: when α = 0.01
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Table 6.1: Percentage of the policy space for which convergence is certain, based on the value of α, in
the Prisoners’ Dilemma (PD), Stag Hunt (SH), Battle of the Sexes (BoS) and Coordination Game (CG).
Results are acquired using a grid resolution of 40× 40.

α = 0.1 SH BoS CG Avg
FAQ 18.4 34.6 43.5 32.2
LFAQ 70.4 36.3 78.0 61.5
RM 80.8 72.3 77.8 77.0
FALA 31.6 45.0 49.1 41.9
Avg 50.3 47.0 62.1 53.1

α = 0.01 SH BoS CG Avg
FAQ 74.4 78.6 80.3 77.8
LFAQ 86.0 85.6 90.5 87.4
RM 91.9 90.9 91.3 91.4
FALA 72.4 79.3 80.3 77.4
Avg 81.2 83.6 85.6 83.5

α = 0.001 SH BoS CG Avg
FAQ 96.9 95.9 97.4 96.8
LFAQ 97.9 96.6 98.5 97.6
RM 98.6 97.1 98.6 98.1
FALA 95.4 96.3 97.1 96.3
AVG 97.2 96.5 97.9 97.2

LFAQ and RM still outperform the other algorithms, but only with a small margin; when α = 0.001 the
difference in certainty is further reduced to only 1 ∼ 2%.

A different way to look at the behavior of the learning algorithms for various step sizes is to calculate
the standard deviation over time of several learning trajectories, starting at a single point. In this case,
the standard deviation is based on the Euclidean distance between the trajectory points [x1(t), y1(t)] for
different simulation runs (see Equation 5.8). Figure 6.6 shows the standard deviation over time for the
different RL algorithms in the Prisoners’ Dilemma. The settings for alpha are given, the other parameters
of FAQ and LFAQ are set as follows: β = 0.01, τ = 0.01, γ = 0.9 and κ = 5. The figure also shows the
corresponding average learning trajectories. The average and standard deviation are calculated over 100
simulations (10 for α = 0.0001), all starting at [x1 = 0.4, y1 = 0.75].

These results confirm that the predictability of the learners’ behavior increases with decreasing step
size. Furthermore, where the convergence pureness experiments only investigate to which equilibrium
the learners converge, the standard deviation plot also illustrates in what way they do so. The results
indicate that even if the convergence is predictable, there can still be considerable variation in the learning
trajectories that lead to the equilibrium. Figure 6.7 further highlights this variation by showing the
individual learning trajectories together with their average for different step sizes.

The results presented in this section show that the predictability of a learning algorithm’s behavior
indeed increases with decreasing step size. Overall, the Regret Minimization algorithm behaves more
predictable than the other learning algorithms, both with respect to convergence as to its learning tra-
jectory, especially when the step size is large (α = 0.1). For smaller step sizes the differences between
the RL algorithms diminish. Both Table 6.1 and Figure 6.6 indicate that a step size α of 0.1 results
in unpredictable behavior for FAQ, LFAQ and FALA, whereas RM still performs reasonably well. Fur-
thermore, no considerable differences are observed in the behavior of those three algorithms, except that
LFAQ tends to perform better in cooperative games where one equilibrium is preferred over the other.

To conclude, in order to achieve reliable results in the remainder of the experiments in this thesis, the
step size for FAQ, LFAQ and FALA has to be at most 0.01. For RM, a step size of 0.1 is also allowed.
The next section investigates how the various step sizes relate to the algorithms’ speed of convergence.

6.2.2 Convergence speed

The next step in fine-tuning the learning rate is to investigate the convergence speed of the learning
algorithms for various step sizes. This is important in two ways. First of all, it gives an idea about the
relation between the step size and the number of iterations needed to converge, which helps to find the
right balance between predictability and speed of the learning process. Secondly, it shows the speed of
the learning algorithms relative to each other. This is particularly interesting when two different learning
algorithms are plays against each other. For example, knowing the relation between the learners’ step
sizes and their convergence speed makes it possible to select the step sizes in such a way that the different
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Figure 6.6: The average trajectory (left) and standard deviation over time (right) for varying learning
rates in the Prisoners’ Dilemma. All learners start at [0.4, 0.75].
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Figure 6.7: Individual FAQ-learning trajectories (gray) and their mean (black) in the Prisoners’
Dilemma for different values of α, starting at [0.4, 0.75].

algorithms learn comparably fast in self play, which ensures a fair competition in mixed play.

Table 6.2 shows the average number of iterations needed to converge for the different learning algo-
rithms, in different games using varying settings for the step size α. These averages are calculated by
running 2500 simulations (250 for α = 0.001) with starting points uniformly distributed over the policy
space. The same parameter settings are used as for the gradient field experiments in the previous section:
β = τ = 0.01 and γ = 0 for FAQ and LFAQ, and κ = 5 for LFAQ.

Table 6.2: Mean convergence time, rounded to integers, for varying step size α in the Prisoners’ Dilemma
(PD), Stag Hunt (SH), Battle of the Sexes (BoS) and Coordination Game (CG). Averaged over 2500
simulations with uniformly distributed starting points (250 simulations for α = 0.001).

PD α = 0.1 α = 0.01 α = 0.001
FAQ 485 4667 46388
LFAQ 2907 26930 270003
RM 386 3802 38413
FALA 399 3828 38116

SH α = 0.1 α = 0.01 α = 0.001
FAQ 171 1666 16163
LFAQ 2575 13491 121650
RM 166 1586 15778
FALA 135 1497 15621

BoS α = 0.1 α = 0.01 α = 0.001
FAQ 169 1621 16280
LFAQ 1296 11341 113151
RM 155 1485 14827
FALA 149 1473 14898

CG α = 0.1 α = 0.01 α = 0.001
FAQ 118 1116 11131
LFAQ 642 6017 60070
RM 112 1065 10611
FALA 111 1058 10576

The table indicates a clear relation between the step size α and the convergence speed: when the
step size decreases with a factor 10, the number of iterations needed increases also with a factor 10.
This relation becomes even more apparent when the results are plotted on a log-log scale, as shown in
Figure 6.8 for FAQ learning. The only exception to this rule is LFAQ with α = 0.1 in the Stag Hunt
game. In this case, the relatively large step size apparently causes the learner to behave differently and
as a result it converges more slowly. An analysis of the individual learning trajectories also indicates this
difference. However, an in-depth investigation of this deviation falls outside the scope of this thesis, and
it will therefore be treated as an outlier.

These results also provide a means to ensure comparable convergence speeds for the different algo-
rithms. This is of particular importance for the mixed play experiments, in order to allow for a fair
competition that emphasizes the true qualitative differences between the learners. For example, to match
the convergence speed of FAQ and RM, the ratio ρ between their respective average number of iterations
k, normalized for α, can be calculated as

ρRM,FAQ =
α · kRM

α · kFAQ

.

This ratio might differ depending on the game considered. In the Prisoners’ Dilemma the mean ratio
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Figure 6.8: Convergence speed against step size α for FAQ learning on a log-log scale.

between RM and FAQ is
38.6 + 38.02 + 38.413

48.5 + 46.67 + 46.388
= 0.81.

Since the relation between step size and convergence speed is inverse linear, multiplying the step size α
of RM by ρ should alleviate the difference in convergence speed of FAQ and RM. Table 6.3 shows the
resulting mean convergence time after applying this procedure for the different learning algorithms in the
Prisoners’ Dilemma. The ratio is calculated with respect to FAQ for all learners.

Table 6.3: The leveling effect of the ratio ρ on the mean convergence time of the different learners in
the Prisoners’ Dilemma. Averaged over 2500 simulations with uniformly distributed starting points (250
simulations for α = 0.001ρ).

ρ α = 0.1ρ α = 0.01ρ α = 0.001ρ
FAQ 1.00 485 4667 46388
LFAQ 5.86 532 5145 46625
RM 0.81 474 4686 46655
FALA 0.82 477 4648 46121

As can be seen, applying the ratio ρ to the step size of the learners indeed removes the initial differences
in convergence time. The leveling effect is most clear for α = 0.001; for larger step sizes some variation
in the results can be observed. The relatively large deviations in the LFAQ results are caused by the fact
in this case ρ > 1, which means that the step size further increases, leading to less predictable behavior.
Applying this procedure to the other games, using the corresponding values for ρ, leads to similar results.
Table 6.4 summarizes the ratios for all games and learners, calculated using Table 6.2. The values found
in Table 6.4 are used throughout the remainder of the experiments.

Table 6.4: The ratio ρ for different games and learners, with respect to FAQ.

PD SH BoS CG
FAQ 1.00 1.00 1.00 1.00
LFAQ 5.86 7.81 7.20 5.41
RM 0.81 0.97 0.91 0.95
FALA 0.82 0.89 0.90 0.95

As concluded in Section 6.2.1, the step size of the learning algorithms should be at most 0.01 (or 0.1
for RM). Setting α = 0.001 as base step size parameter, in combination with the ratios found in Table 6.2,
leads to a maximum step size of 0.001× 7.81 = 0.00781 for LFAQ which is just below the maximum of
0.01. Therefore, α = 0.001 is selected as base parameter setting for the homogeneous and heterogeneous
experiments described in the remainder of the chapter.



48 Results

6.3 Self play

Self play, or homogeneous play, is the standard form of learning experiments, in which each competing
player implements the same learning algorithm. All experiments described so far fall under this heading.
Self play experiments can provide useful insights into the standard behavior of the respective learning
algorithms, and therefore provide a baseline for the heterogeneous mixed play experiments in Section 6.4.

The same parameter settings are used in all experiments described in this section. All algorithms
use step size α = λ = 0.001 times the ratio given in Table 6.4. For (L)FAQ, β = 0.01, τ = 0.01 and
γ = 0; LFAQ uses κ = 5; and FALA uses the LR−I update scheme where β = 0. This section is further
divided in three parts, describing the behavior, convergence properties, and performance of the learning
algorithms respectively.

6.3.1 Behavior

The behavior of a learner over time can be visualized using a trajectory plot or by plotting the directional
field of the corresponding evolutionary model (see Section 5.4.1). Here, a combination of both is used
to show how the individual learning trajectories relate to their evolutionary predication. All trajectory
plots show the average trajectory over 10 simulations of 50,000 iterations each (100,000 for the Prisoners’
Dilemma).

In the Prisoners’ Dilemma, belonging to the first category of games, not much variation is observed in
the trajectories or predictions for the different learning algorithms, they all behave similarly. Figure 6.9
shows the behavior of the four different algorithms in this game. As can be seen, all trajectories converge
to the game’s Nash equilibrium (D,D), which in the plot lies at (0,0). The directional field indicates that
indeed all possible initial policies will eventually converge to this equilibrium.
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Figure 6.9: Several policy trajectories of the four different algorithms in the Prisoners’ Dilemma. The
arrows indicate the directional field of the corresponding evolutionary models.

In the three games belonging to the second category, with multiple equilibria, a clear distinction can
be observed between the three non-lenient learners, FAQ, FALA and RM, and the lenient learner LFAQ.
Figure 6.10 shows the difference in behavior of FAQ and LFAQ in these three games. In this case, FAQ
is taken as a representative example of the non-lenient learners, whose behavior is again very similar to
each other.

In the Battle of the Sexes, the trajectories converge to the same equilibria for both types of learners,
but do so in different ways. Where the dynamics of the non-lenient learners correspond to the basic
replicator dynamics of the game (see Figure 3.7), the lenient learner has a different mixed equilibrium
much closer to (O,F) which indicates that a lenient player sticks to its preferred action much longer by
ignoring lower payoffs. The higher the degree of leniency, the closer the mixed equilibrium gets to (O,F).

The Stag Hunt, and to a lesser extend also the Coordination Game, clearly show the advantage of
leniency in cooperative environments. In these games, both player prefer the same equilibrium, which is
in both cases located at (1,1). In the Stag Hunt, non lenient learners prefer the safer risk dominant equi-
librium (0,0), where both hunt for Hare. The lenient learner in this case ignores initial mis-coordinations,
and can therefore reach the Pareto optimal equilibrium (S,S) in most cases. In the Coordination Game
this effect is less strong, since neither equilibrium presents a safe choice. However, again the lenient
learner is able to reach the Pareto optimal equilibrium more often. This result is analyzed in more detail
in the next section.
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Figure 6.10: Policy trajectories of FAQ and LFAQ in the Battle of the Sexes (BoS), Stag Hunt (SH),
and Coordination Game (CG). In these games, the trajectories of FALA and RM are very similar to
those of FAQ.

The last game, Matching Pennies, shows different results for each learner. The policy trajectories are
presented in Figure 6.11. In this case, both FAQ and LFAQ are spiraling inward towards the equilibrium;
LFAQ spirals faster but moves slower. The other two learners, especially the RM algorithm, lead to
concentric policy trajectories around the equilibrium. This behavior corresponds to the basic replicator
dynamics of the game shown in Figure 5.6.
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Figure 6.11: Policy trajectories of the four different learning algorithms in the Matching Pennies game.

Summarizing, it can be argued that in general the behavior of LFAQ deviates most from the other
learners. This deviation occurs most notably in games with multiple equilibria, where cooperation be-
comes important. In these cases, the lenient learner is able to reach to Pareto optimal Nash equilibrium
more often than the three non-lenient learners.

6.3.2 Convergence properties

As mentioned in the previous section, in cooperative games, with multiple equilibria, a player might
prefer one equilibrium over the others. In the Stag Hunt, both players are best off in the Pareto optimal
equilibrium (S,S), however they might still prefer (H,H) for its safety. In the Battle of the Sexes, both
players prefer opposite equilibria. Finally, in the Coordination Game both players prefer the Pareto
optimal equilibrium (O,O).
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A useful concept to describe these preferences is the basin of attraction (see Section 3.2.3). The basin
of attraction of an equilibrium can be found by calculating the area of the policy space for which the
learning process eventually converges to that equilibrium, as explained in Section 5.4.2. Table 6.5 shows
the percentage of the policy space belonging to the basin of attraction of the two Nash equilibria in the
three cooperative games. These percentages are calculated using a grid resolution of 100 × 100. The
other two games are not shown since they have only one equilibrium and therefore only one basin of
attraction, which is either the whole policy space - in the Prisoners’ Dilemma, and in Matching Pennies
when the learning trajectories are spiraling inwards - or empty - in Matching Pennies when the learning
trajectories form concentric circles.

Table 6.5: Percentage of the policy space belonging to the basin of attraction of the stable Nash
equilibria in cooperative games, for different learners. Pareto optimal equilibria are indicated with ∗.

SH BoS CG
(H,H) (S,S)∗ (F,F) (O,O) (F,F) (O,O)∗

FAQ 74.3 25.7 49.5 49.5 25.7 73.9
LFAQ 19.0 80.9 49.5 49.5 10.8 89.2
FALA 73.8 26.3 49.5 49.5 26.3 73.8
RM 73.8 26.3 49.5 49.5 26.3 73.8

These results again indicate that LFAQ has a higher probability of reaching the Pareto optimal
equilibria in the Stag Hunt and the Coordination Game. Especially in the Stag Hunt, LFAQ outperforms
the other learners by a considerable margin of 80% against 26%. In the Battle of the Sexes both equilibria
are Pareto optimal, and neither is preferred by both players. As a result, the policy space is divided equally
among those two equilibria. Note that in some cases a small percentage of the policy space is not assigned
to a basin of attraction. This may happen when grid cells are overlapping the border between two basins
of attraction. In this case, the calculation method might not be able to assign this cell to either of the
equilibria.

6.3.3 Performance

The performance of the learners is analyzed by looking at their average cumulative reward. Table 6.6
shows the cumulative reward of the learning algorithms in four different games. The numbers are acquired
by running 1,000 simulations with uniformly distributed starting points for each combination of game and
learner, and averaging over the result of both players to rule out deviations based on player type rather
than learning algorithm. The cumulative rewards for playing the games’ Nash equilibria are also given to
illustrate the relative performance of the learning algorithms. For the Battle of the Sexes only one value
is given as both equilibria are equally likely in this case; for the Stag Hunt and the Coordination Game
values are given for both pure equilibria. The Matching Pennies game is not show in this table since this
is a zero-sum game (be it normalized), and therefore the average reward over the two players is constant,
in this case 1

2 per iteration.

Table 6.6: The average cumulative reward, rounded to integers, of the learning algorithms in different
games, after 50,000 iterations (100,000 iterations for the Prisoners’ Dilemma). The cumulative rewards
for playing the games’ Nash equilibria are given for comparison.

Performance PD SH BoS CG
FAQ 21839 36010 35608 43958
LFAQ 22084 47173 35075 48054

FALA 22880 36394 35703 42347
RM 22558 36155 35629 41205
Nash 20000 33333, 50000 37500 25000, 50000

The results show that there is not much difference in performance in the Prisoners’ Dilemma and the
Battle of the Sexes. In these two games, the basins of attraction are similar for all learners, as explained
in the previous section. Furthermore, the differences in behavior of the learners are not significant enough
to result in large deviations in cumulative reward. In the Stag Hunt and Coordination Game, however,
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Figure 6.12: Average reward over time for different learners. The values are averaged of both players,
except in Matching Pennies where only the reward of player 1 is taken into account.

a difference can be observed between LFAQ and the other, non-lenient, learners. In these cases, LFAQ
has a higher probability of reaching the Pareto optimal equilibrium than the other learners, leading to a
higher average cumulative reward. In both games the average cumulative reward of LFAQ is close to the
reward for playing the Pareto optimal Nash equilibrium.

The performance of a learner can be studied in more detail by looking at the development of the
average reward over time. Figure 6.12 compares the average reward over time of different learners in each
game. For Matching Pennies only the reward of player 1 is taken into account, for the other games the
reward is again averaged over both players.

These figures tell the same story: LFAQ outperforms the other learners in the Stag Hunt and the
Coordination Game, whereas in the other games there is less deviation in the results. Furthermore, two



52 Results

interesting details can be noted. First, in the Prisoners’ Dilemma LFAQ converges more quickly in the
beginning, leading to a steeper decrease in average reward initially. The reason is that the lenient learner
ignores the relatively low reward of the Nash equilibrium and focuses on the maximum reward that results
if the opponent defects. Secondly, in the Battle of the Sexes the reward of LFAQ increases less quick
than that of the other learners, which is caused by the fact that LFAQ sticks to its preferred action for
a longer time before conceding to its opponent, as explained earlier.

6.4 Mixed play

In the mixed play experiments, games are played by heterogeneous pairs of players, meaning that both
players implement different learning algorithms. The results of these experiments are compared with
those of the self play experiments in the previous section. This gives in insight into how the behavior of
a learner depends on the behavior of its opponent. Moreover, the results indicate how well the learners
fare against different opponents by looking at their performance.

Again, all experiments use the same parameter settings. All learners use step size α = λ = 0.001
times the ratio given in Table 6.4. For (L)FAQ, β = 0.01, τ = 0.01 and γ = 0; LFAQ uses κ = 5; and
FALA uses the LR−I update scheme where β = 0. This section is divided in three parts, describing the
behavior, convergence properties, and performance of the learning algorithms respectively.

6.4.1 Behavior

The behavior of the learners is again analyzed by running simulations with several different starting
points, and plotting the resulting trajectories together with the directional field of the mixed replicator
equations of the evolutionary models. For each starting point, 10 simulations are run and the resulting
average trajectories are shown. Each simulation consists of 50,000 iterations (100,000 in the Prisoners’
Dilemma).

As in self play, the non-lenient learners behave very similar to each other; most deviations occur when
LFAQ is involved. To illustrate, Figure 6.13 shows the behavior of combinations of the three non-lenient
learners in the Stag Hunt game. The behavior of these combinations of learners does not show any
significant differences. Moreover, the behavior is very similar to the self play behavior of these learners,
see for example the self play of FAQ in Figure 6.10.
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Figure 6.13: Policy trajectories of combinations of non-lenient learners in the Stag Hunt game.

When LFAQ is involved, the resulting behavior tends to differ from any of the learners’ self play
behavior. Figure 6.14 shows the behavior of a combination of FAQ and LFAQ in four different games.
In these games, both FALA and RM in combination with LFAQ show very similar results. The learning
trajectories clearly deviate from the self play behavior of any of the learners. Interesting to note is that the
evolutionary prediction is still correct, which shows that also in a heterogeneous setting the evolutionary
game theoretic approach provides useful insights.

In the Prisoners’ Dilemma, the general behavior of the combination FAQ - LFAQ is still very similar
to self play. The trajectories are lightly bend downwards, indicating that LFAQ converges slightly faster
in the beginning of the learning process. This can be explained by the fact that the lenient learner ignores
several lower rewards, and instead focuses on the game’s maximum payoff that results when LFAQ plays
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Figure 6.14: Policy trajectories of mixed play between FAQ and LFAQ in four different games. The
dotted trajectory line in Battle of the Sexes indicates that not all simulations converged to the same
equilibrium for this starting point; instead the average trajectory to each equilibrium is shown.

Defect and its opponent plays Cooperate. This drives the lenient learner towards action D early in the
process.

The examples of the Stag Hunt and the Coordination Game show again the advantage of leniency
in a cooperative environment. The combination of LFAQ and FAQ converges to the Pareto optimal
equilibrium more often than FAQ in self play. The strong inward curved trajectories in the Stag Hunt
indicate that initially the learners struggle to settle on an equilibrium. LFAQ prefers the Pareto optimal
equilibrium at (1,1), whereas FAQ prefers the risk dominant equilibrium at (0,0). Being lenient, LFAQ
ignores the initial preference of FAQ to a certain degree, and is therefore able to steer the learning process
towards the Pareto optimal solution.

The Battle of the Sexes proves interesting in a slightly different way. Here, in self play the learners
behave similar in general, as neither equilibrium is preferred by both players. When combined, however,
the otherwise symmetric learning dynamics are skewed in favour of LFAQ, resulting in a larger basin
of attraction for its preferred equilibrium (F,F), at (0,0). This shows that leniency can also offer an
advantage in coordination games with conflicting interests, when playing against non-lenient players.

Finally, in the Matching Pennies game, different behavior can again be observed for each combination
of learners. Most notably, FAQ and LFAQ still tend to spiral inwards towards the mixed equilibrium, but
the inwards movement decreases when either learner plays against FALA or RM. A combination of the
latter two learners shows hardly any inward movement, in line with these learners’ respective self play
results. Figure 6.15 provides examples of each of these situations.

6.4.2 Convergence properties

The effect of the behavioral changes resulting from mixed play, described in the previous section, can
best be analyzed by looking at the changing basins of attraction of the different games. As in self play,
this analysis is limited to the three games with multiple equilibria, since both the Prisoners’ Dilemma
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Figure 6.15: Policy trajectories of combinations of learners in the Matching Pennies game.

and the Matching Pennies game have only one basin of attraction that either fills the whole policy space,
or is empty.

As noted before, the most interesting changes occur when LFAQ is involved. Figure 6.16 shows the
basins of attraction in the three games for FAQ and LFAQ, both in self play and when the two play
against each other. The basins are calculated using a grid resolution of 100× 100, and are represented as
a solid line indicating their border. The directional field of the (mixed) evolutionary model is also shown
to provide a clear overview of the convergence properties.
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Figure 6.16: Overview of the basins of attraction of FAQ, LFAQ, and the combination between both
learners as representative examples of the difference between non-lenient and lenient learners.
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The figures show several interesting properties of mixed play learning. In the Stag Hunt game, for
example, both learners have almost oppositely distributed basins of attraction in self play, with FAQ
converging to the risk dominant equilibrium at (0,0), and LFAQ to the payoff dominant equilibrium at
(1,1) in the larger part of the policy space. When these two learners play against each other, the resulting
basins of attraction appear to be a mix between those two opposites. A similar effect can be seen in
the Coordination Game, although in this case the difference is much smaller as the original basins of
attraction are more similar.

Also interesting to note is that in the Battle of the Sexes, FAQ and LFAQ show similar convergence
properties in self play, but LFAQ profits in the mixed scenario: a larger part of the policy space converges
to (0,0), which corresponds to the preferred equilibrium (F,F) of LFAQ, being player 2. When the learners
switch sides, again LFAQ ‘wins’ and FAQ ‘loses’ in a larger part of the policy space.

The results for all combinations of learners are summarized in Table 6.7. The baseline values indicate
the basins of attraction in self play, where ‘baseline other’ is the average of the three non-lenient learners
as given in Table 6.5. The results are similar to the examples given above. In general, mixed play
between non-lenient learners does not lead to significantly different result from the self play case. In
common interest cooperative games, the results for mixed play involving LFAQ lie in between those of
the self play scenarios. In cooperative games with conflicting interests, in this case the Battle of the
Sexes, LFAQ ‘wins’ in a larger area of the policy space.

Table 6.7: Percentage of the policy space belonging to the basin of attraction of the stable Nash
equilibria in cooperative games, for different combinations of learners. Pareto optimal equilibria are
indicated with ∗.

SH BoS CG
(H,H) (S,S)∗ (F,F) (O,O) (F,F) (O,O)∗

Baseline LFAQ 19.0 80.9 49.5 49.5 10.8 89.2
Baseline other 73.9 26.1 49.5 49.5 26.1 73.8
FAQ - LFAQ 37.3 62.7 68.3 31.7 16.7 83.3
FAQ - FALA 73.8 25.8 50.5 49.5 26.2 73.8
FAQ - RM 73.8 25.8 50.5 49.5 26.2 73.8
LFAQ - FALA 37.9 62.1 31.6 68.4 16.9 83.1
LFAQ - RM 37.9 62.1 31.2 68.8 16.9 83.1
FALA - RM 73.8 26.3 49.5 49.5 26.2 73.8

6.4.3 Performance

The performance of the learners is again analyzed by looking at the cumulative reward earned during
game play. The cumulative reward of learning algorithm A against learning algorithm B is calculated as
the average over 1,000 simulations where A is player 1 and B is player 2, and another 1,000 simulations
where B is player 1 and A is player 2. This rules out deviations based on player type rather than learning
algorithm. The starting points of the simulations are uniformly distributed over the policy space. The
results are compared to those of the self play experiments in Section 6.3. Table 6.8 presents an overview
of this comparison. The self play results are given in the diagonal for each game; the cumulative reward
of learner A against learner B is given in row A and column B. The results for Matching Pennies are not
shown in this table; in this game the results show almost no variation with an average of 25,000 and a
standard deviation of 89.

In the Prisoners’ Dilemma, the results do not show large differences between the learning algorithms.
Apparently, the fact that LFAQ profits slightly in the beginning of the learning process does not result
in a noticeably higher payoff. In the three cooperative games, however, LFAQ performs best against all
other learners. Most notably, in Battle of the Sexes LFAQ clearly ‘wins’, as the other learners do worse
against LFAQ than against themselves. Moreover, LFAQ does better against the others than against itself
in this game. In the two common interest games, the Stag Hunt and the Coordination Game, LFAQ does
worse against the others than against itself; in this case the other learners profit most in mixed play.
Overall, however, it is clear that leniency is profitable in all coordination games, while at the same time
is does not do worse in the non-cooperative games considered here.
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Table 6.8: Overview of the performance (cumulative reward) of the learners (rows) against different
opponents (columns).

PD FAQ LFAQ FALA RM
FAQ 21839 22418 22572 23237
LFAQ 22182 22084 24281 22422
FALA 21853 21451 22880 23608

RM 22621 21936 21740 22558

SH FAQ LFAQ FALA RM
FAQ 36010 43336 36295 37180
LFAQ 42200 47173 42239 41223

FALA 36205 42878 36394 36574
RM 37134 42232 36276 36155

BoS FAQ LFAQ FALA RM
FAQ 35608 29170 34759 32617
LFAQ 42020 35075 37825 40567

FALA 36381 32842 35703 33945
RM 38463 30097 36871 35629

CG FAQ LFAQ FALA RM
FAQ 43958 45191 44313 42937
LFAQ 45191 48054 45228 45097

FALA 44313 45228 42347 44546
RM 42937 45097 44546 41205

Figure 6.17 takes a closer look at the performance of lenient and non-lenient learners, showing the
average reward over time for FAQ and LFAQ, both in self play and mixed play. In the Prisoners’ Dilemma
and the Matching Pennies game, not much variation is seen in the results, indicating that both learners
do equally well in these games. In the Stag Hunt, LFAQ performs better than FAQ in self play, but it
does worse in mixed play. This can be explained by the fact that FAQ still prefers to play action H in
the beginning, which leads to a lower payoff for LFAQ when playing S. In the Battle of the Sexes, LFAQ
clearly gains from mixed play, whereas FAQ looses. Finally, in the Coordination Game the mixed result
lies between two two learner’s results in self play. In this game, both players always receive the same
payoff and therefore their cumulative reward in mixed play is exactly equal.

It is also possible to calculate the expected average reward of the learners, using the basins of attraction
calculated in Table 6.7 and the games’ payoff matrices. For example, self play of FAQ in the Stag Hunt
game results in 74.3% of the policy space converging to (H,H) and 25.7% converging to (S,S). Given
the game’s normalized payoff matrix (Table 5.7), this leads to an expected average reward for FAQ of
0.743× 2

3 +0.257×1 = 0.75. This expectation agrees with the trend observed in Figure 6.17. Similarly, the
expected average rewards for LFAQ and a combination of both can be calculated, leading to the numbers
shown in Table 6.9. Again, these evolutionary expectations are in line with the simulation-based findings
presented in Figure 6.17, which shows that the replicator dynamics are not only useful in describing the
behavior and convergence of the learners, but can also accurately predict their performance.

Table 6.9: Expected average reward for FAQ and LFAQ in self play and mixed play, based on the games’
basins of attraction and payoff matrices.

SH BoS CG
Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

FAQ self play 0.75 0.75 0.74 0.74 0.87 0.87
FAQ - LFAQ 0.88 0.88 0.66 0.84 0.92 0.92
LFAQ self play 0.94 0.94 0.74 0.74 0.95 0.95

6.5 Summary of the results

This section provides a summary of the main results of this chapter. Note that this summary is not
exhaustive, it merely serves to recapitulate several important results before proceeding with a discussion
and the conclusions in the next chapter.

The proposed LFAQ algorithm is shown to match the behavior predicted by the evolutionary model
derived by Panait et al. (2008), whereas the original Lenient Q-learning algorithm may deviates consid-
erably. Furthermore, LFAQ behaves consistently, irrespective of the initial Q-values. These results are in
line with the findings presented by Kaisers and Tuyls (2010) in the case of regular Q-learning. Further-
more, the strength of leniency in cooperative games is demonstrated, and it is argued that the proposed
LFAQ algorithm inherits the theoretical claim of Panait et al. (2008) that a properly-set lenient learner
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Figure 6.17: Average reward over time for FAQ and LFAQ, in self play and when playing against each
other.
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can reach the Pareto optimal Nash equilibrium in cooperative games with an arbitrarily high probability.
Section 6.2 describes the effect of the step size α on the behavior and convergence speed of the learning

algorithms. It is shown that a step size of 0.1 leads to a high variation in the results; 0.01 is found to be
the maximum step size that still produces reliable results. Furthermore, a method is designed to reduce
differences in the convergence speed of the algorithms in self play, by calculating a multiplication factor
for the step size parameters. This is necessary in order to ensure a fair competition in the heterogeneous
mixed play experiments, by ruling out artifacts based on quantitative rather than qualitative differences
between the learners.

The self play experiments, described in Section 6.3, show that all learners behave as predicted by their
evolutionary models. There are considerable differences between the behavior of LFAQ and the other,
non-lenient, learners. This difference is most notable in common interest cooperative games such as the
Stag Hunt, where LFAQ converges to the Pareto dominant equilibrium with a higher probability than
the other learners, thereby achieving a higher cumulative reward.

Similar effects are observed in the mixed play experiments of Section 6.4. Mixed non-lenient learners
show behavior similar to each other, and to their own behavior in self play. When LFAQ is involved, the
behavior changes considerably. An interesting example is the Battle of the Sexes, where LFAQ is able to
steer the learning process towards its preferred equilibrium with higher probability than the non-lenient
learners. This results in a higher cumulative reward for LFAQ in mixed play, and a lower reward for
its opponent. In the common interest cooperative games, LFAQ ‘helps’ its opponent to converge to the
Pareto optimal equilibrium, which leads to a higher payoff for the opponent and a lower payoff for LFAQ
itself. In general, however, LFAQ always performs at least as well against a specific opponent as any
other learner does. This indicates that leniency is a dominant choice in cooperative games.

Finally, the evolutionary game theoretic approach proves effective and efficient in describing the
behavior and convergence properties of reinforcement learning algorithms, both in self play and in mixed
play. Moreover, based on the evolutionary models it is possible to predict the performance of the learners
in a specific game, using the game’s basins of attraction and payoff matrix to compute the expected
average reward of the learners.



Chapter 7

Discussion and conclusions

This chapter summarizes and discusses the main findings of this thesis. After the discussion, answers to
the research questions are presented, and a general conclusion to the main problem statement is given.
Finally, recommendations for future work are put forward.

7.1 Discussion

This thesis contributes in four distinct ways to the field of multi-agent reinforcement learning. One,
Lenient Frequency Adjusted Q-learning demonstrates how insights from evolutionary game theory can
lead to new or improved reinforcement learning algorithms; two, the importance of fine tuning the learning
rate is demonstrated; three, the relation between learning behavior and performance is demonstrated in
homogeneous and heterogeneous environments; and four, the benefit of leniency in cooperative games is
shown empirically. This section discusses these contributions in detail.

First of all, it has been shown that the improvement to Q-learning introduced by Kaisers and Tuyls
(2010) applies to Lenient Q-learning as well, which led to the proposed Lenient Frequency Adjusted
Q-learning algorithm. This algorithm proved to be consistent with the evolutionary model of Lenient
Q-learning derived by Panait et al. (2008), whereas the original algorithm may deviate considerably.
Furthermore, the behavior of LFAQ is independent of the initialization of the Q-values. Finally, the
behavior of LFAQ is more desirable than the behavior of the original LQ algorithm with respect to the
learning trajectories followed.

Second, the thorough analysis of the influence of the step size on the behavior and predictability
of the learners has revealed that a step size larger than 0.01 in general leads to stochastic behavior
with respect to the convergence and the trajectory of the learning process. It is important to be aware
of such effects, as some applications might require more deterministic behavior. Furthermore, it has
been shown how knowledge of the average convergence speed of the learners can lead to a more fair
comparison, as it has been argued that such knowledge is indeed required when studying the behavior
of learners in heterogeneous environments. Ignoring the underlying differences in learning speed might
lead to conclusions not based on the qualitative behavior of the learners in question, but rather on their
relative learning speed. A method is provided to rule out such differences, by matching the average
learning speed of different learning algorithms in advance.

Third, the experiments on self play and mixed play learning provided several interesting results. First
of all, the evolutionary game theoretic approach proved valuable both in self play and in mixed play. The
directional field of the replicator dynamics provides a clear view on the behavior of the learners. The
convergence properties of the learners in a specific game can be analyzed by calculating the game’s basins
of attraction, which in turn provides insight into the possible outcomes of the game. A straightforward
extension of this analysis is combining the obtained basins of attraction with knowledge of the game’s
payoffs in order to compute the expected average reward of the learners in this game. It has been
shown that these expectations agree with the simulation-based findings. An important advantage of the
EGT approach is that it is computationally inexpensive. Since the replicator equations allow for exact
calculations, it is not necessary to run extensive simulations to ensure statistical significance. This makes
it a valuable approach for the analysis of learning behavior, which can simplify the otherwise tedious task
of parameter tuning, and can facilitate the selection of a suitable RL algorithm given a certain problem.
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The fourth contribution concerns the behavior of the learners, in particular the behavior of LFAQ.
In self play, the lenient learner outperforms the three non-lenient learners in common interest coopera-
tive games (the Stag Hunt and Coordination Game). In the other games, its performance is similar to
that of the other learners. In mixed play, LFAQ outperforms the non-lenient learners in all cooperative
games, also in the case of conflicting interests (Battle of the Sexes). Again, in the other games (Pris-
oners’ Dilemma and Matching Pennies) all learners show equal performance. This confirms the findings
of Panait et al. (2006) in homogeneous environments, and extends their work by showing that, in game
theoretic terms, leniency is a dominant choice in heterogeneous cooperative games.

7.2 Conclusions

This thesis focused on the analysis of reinforcement learning algorithms by combining quantitative algo-
rithmic performance measures with qualitative behavioral insights based on evolutionary models. Before
arriving at a general conclusion, the four research questions presented in Section 1.3 are recapitulated
and answered.

Research question 1. Does the proposed Lenient Frequency Adjusted Q-learning algorithm effectively
implement the evolutionary model derived by Panait et al. (2008), thereby resolving the discrepancies
observed between the actual and predicted behavior of Lenient Q-learning?

Lenient Frequency Adjusted Q-learning was proposed as a variation of Lenient Q-learning, based on a
discrepancy between the learning trajectories and the expected dynamics of that learner. It has been ar-
gued theoretically and shown empirically that LFAQ indeed matches the evolutionary dynamics, and that
its learning behavior is more preferable than that of normal Lenient Q-learning. This demonstrates that
insights from evolutionary game theory can indeed be used to improve the performance of reinforcement
learning algorithms.

Research question 2. To what extent can the evolutionary game theoretic approach facilitate the analy-
sis of multi-agent reinforcement learning algorithms in homogeneous environments, and can these insights
be effectively generalized to heterogeneous environments?

Both the simulation experiments and the evolutionary analysis indicate considerable differences in the
self play behavior of lenient and non-lenient learners. These differences are most apparent in cooperative
games, especially when the players share common interests. In these games, a lenient learner is able
to converge to the Pareto dominant equilibrium for larger part of the policy space than a non-lenient
learner, leading to a higher cumulative reward. In the two non-cooperative games, all learners show equal
performance.

The results observed in mixed, heterogeneous game play show differences similar to those in self
play. A combination of players that includes a lenient learner has a higher chance of converging to
the Pareto optimal equilibrium in common interest cooperative games. In a cooperative game with
conflicting interests, the lenient learner has a higher chance of converging to its preferred equilibrium
than a non-lenient opponent. As a result, the lenient learner outperforms the non-lenient learners in all
cooperative games by achieving a higher cumulative reward. In the non-cooperative games, all learners
perform equally, which is expected considering that these games only have one equilibrium. Again, the
evolutionary game theoretic approach enables efficient prediction of the algorithms’ behavior, convergence
and performance.

Research question 3. How can the traditional algorithmic approach and the evolutionary game theoretic
approach complement each other in order to analyze the link between behavior and performance of multi-
agent reinforcement learning algorithms?

It has been shown that, both in self play and in mixed play, the evolutionary game theoretic approach
provides valuable insights into the expected behavior and convergence properties of (pairs of) learners.
The directional field of the evolutionary dynamics can efficiently predict learning trajectories from any
starting point in the policy space. Furthermore, the evolutionary dynamics allow the direct calculation of
the basins of attraction of a game, given a combination of learners. This not only describes the convergence
properties of these learners, but can also be used to calculate their expected average reward. These
examples show that the evolutionary game theoretic approach is a valuable addition to the traditional
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algorithmic approach, by providing an efficient way to predict the behavior, convergence properties and
performance of multi-agent reinforcement learning algorithms.

Having answered the four research questions, it is possible to arrive at a general conclusion in relation to
the initial problem statement:

Conclusion. Lenient Frequency Adjusted Q-learning has been proposed as a new learning algorithm that
implements the dynamics of the evolutionary model that was originally intended for Lenient Q-learning.
Thereby, the discrepancies between the predicted and actual behavior are resolved. Furthermore, it has
been demonstrated how evolutionary game theory can efficiently describe the behavior and convergence
properties of reinforcement learners in homogeneous and heterogeneous environments. The expected per-
formance of the learners can be estimated based on these results. These predictions are valuable in the
successful deployment of reinforcement learning algorithms, as they provide an efficient way to select a
specific learning algorithm for a given task and can guide the otherwise tedious task of parameter tuning.

7.3 Recommendations for future work

This section highlights several possible directions for future research based on the results achieved in this
thesis. First of all, it would be interesting to extend the self play and mixed play experiments to other
reinforcement learning algorithms. This would make it possible to compare the theoretical findings with
empirical results that can be found in literature (e.g. Bab and Brafman, 2008). At the same time, this
requires the derivation of evolutionary models where they are not yet available, which in itself would be
a valuable addition to the EGT approach.

Secondly, the experiments in this thesis were limited to the domain of 2×2 normal form games. Most
concepts used can be translated to other domains in a straightforward manner. However, providing an
intuitive visualization of games with more than two actions or players is a difficult problem. This requires
a more general procedure for analyzing the behavior of a learner, that exceeds the mere visual analysis
of the evolutionary dynamics.

Thirdly, an extension to multi-state environments can be considered. Although the replicator dy-
namics were originally intended for single-state games, recently state-coupled replicator dynamics have
been proposed that show promising results in general stochastic games (Hennes, Tuyls, and Rauterberg,
2009). More elaborate analytical tools will be required in order to properly describe the behavior of these
multi-state dynamics.

A fourth extension concerns LFAQ. In this thesis, a fixed degree of leniency was used for LFAQ in
all experiments. It is likely that this has an influence on the results. For example, it has been shown
that LFAQ outperforms non-lenient learners in cooperative games for a leniency of 5. Performing similar
experiments with different degrees of leniency might provide useful insights that help in fine tuning the
LFAQ algorithm.
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