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Abstract

This paper describes the learning dynamics of individual learners in a multiplayer Stag Hunt game, fo-
cussing primarily on the difference between lenient and non-lenient learning. We find that, as in 2-player
games, leniency significantly promotes cooperative outcomes in 3-player games, as the basins of attraction
of (partially) cooperative equilibria grow under this learning scheme. Moreover, we observe significant
differences between purely selection-based models, as often encountered in related analytical research,
and models that include mutation. Therefore, purely selection-based analysis might not always accurately
predict the behavior of practical learning algorithms, which often include mutation.

1 Introduction

In this paper, we investigate the learning dynamics of individual learners in a generalized Stag Hunt game
with more than two players, as proposed by Pacheco et al. [5]. We are mainly interested in the dynamics
exhibited by a lenient learner in this game, as leniency has shown to be advantageous in a 2-player setting [2].

While extensive research has been performed in the domain of 2-player games [10], multiplayer games,
which are much closer to real-world interactions, have started to receive attention only recently [3]. Rather
than focusing on the N-player Prisoners’ Dilemma (NPD), as is often done in literature, we follow Pacheco
et al. [5] in their argument that the N-player Stag Hunt (NSH) is a more interesting and more appropriate
game. In the Prisoners’ Dilemma, any approach that establishes cooperative outcomes is in a way flawed, as
cooperation is dominated by defection. Only in the iterated game may cooperation be a viable alternative,
e.g., against a tit-for-tat strategy [1]. The Stag Hunt allows for far more interesting dynamics, as even in the
one-shot game, there are two strong Nash equilibria. The cooperative equilibrium is payoff-dominant, while
the defective equilibrium minimizes risk [8].

In addition to following the proposed generalization from 2- to multiplayer games, we generalize by
considering a broader range of strategy-update approaches. Pacheco et al. [5] use a purely selection-based
analytical approach, inspired by statistical physics. In addition, we also consider the possibility of updat-
ing strategies through individual (reinforcement) learning. We compare the learning dynamics of a purely
selection-based learning algorithm, Finite Action-set Learning Automata (FALA) [9], with those of two
learning algorithms that allow for mutation, namely lenient and regular Frequency-Adjusted Q-learning
(FAQ-learning) [4]. Lenient FAQ-learning [2] is based on the concept of leniency [6], i.e., ignoring low
rewards that may be due to initial mis-coordination. Especially in the initial phase of the learning process,
actions that would have been optimal if agents coordinated correctly, may receive a suboptimal payoff be-
cause other agents are still learning to coordinate as well. This may drive agents to a suboptimal outcome.
Leniency has been shown to alleviate this issue [7].

The paper is structured as follows. In the following section, we will present the multiplayer Stag Hunt
game proposed by Pacheco et al. [5]. We also present an analysis of this game in terms of critical parameter
settings and equilibria. In Section 3, we discuss Lenient FAQ-learning. Section 4 describes our experimental
setup, i.e., the replicator equations corresponding to the learning algorithms (FALA, FAQ, Lenient FAQ), as
well as results, i.e., how the different learning algorithms influence the basins of attraction of the multiplayer
Stag Hunt equilibria. We conclude in Section 5.
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Figure 1: The full payoff table of a three-player Stag Hunt game (left) may be represented more compactly
(right), due to the symmetric nature of the Nash equilibria.

2 Multiplayer Stag Hunt

The Stag Hunt [8] is a well known coordination game, in which two players go out on a hunt together. If
they cooperate, they have a high chance of capturing a stag, constituting a high reward. On their own, the
players can only hope to capture a hare, yielding a lower payoff. Should one player try to cooperate, while
the other chooses to hunt alone (defects), the cooperator will fail and get nothing, whereas the defector can
still get a hare. In this game, defection is a safe strategy as reasonable payoff is guaranteed independent of
the other player’s actions. Cooperation poses the risk of being left with nothing, but is more rewarding if
the other player cooperates as well. This simple scenario is highly interesting as it maps perfectly to various
other scenarios of human interaction involving social contract [8].

The n-player Stag Hunt

A straightforward generalization to an n-player Stag Hunt (NSH) has been defined by Pacheco et al. [5].
Suppose there are n players involved in the game. Cooperating incurs a cost ¢, defecting is free of charge.
There is a threshold m < n that defines the minimum number of cooperators needed to produce a public
good. Above this threshold, the value of this public good depends linearly on the number of cooperators, n¢.
The value is defined as n¢ - F' - ¢, where F' is a multiplication factor. As a result, the payoff for a defector is
given by [[, = (ncFe/n)f(nc —m), where 6(x) is the Heaviside step function satisfying 6(z < 0) = 0
and f(x > 0) = 1. The payoff for cooperators is given by [[, = [[, —c. For m = 0, the game is an
n-player Prisoners’ Dilemma, or discretized Public Goods Game.

Representing and analyzing the game

Analyses of normal-form games are generally limited to two players, since adding a third player requires
a three-dimensional payoff table. Bukowski et al. [3] elaborately analyze and classify three-player normal-
form games. Our analysis is aimed to be more intuitive, as we only focus on a specific type of games. An
example of a payoff table for the 3-player Stag Hunt, flattened to two dimensions, is provided in Figure 1
(left). Given the definition of a Nash Equilibrium (i.e., no player can gain from unilaterally changing their
strategy) and the fact that we look at a symmetric game (the players share a common payoff table), we may
represent the NSH in a more compact payoff table, as shown for an example game in Figure 1. Players’
strategy changes correspond to diagonal movements in this table (\, or X ). The example shows a Stag Hunt
with n = 3, m = 2, ¢ = 1. For instance, nc = 3 is a Nash Equilibrium if no player has the incentive to
defect (move \); for this to happen F' — 1 > 2F/3 must be the case. We note that possible mixed equilibria
are not visualized in either the full or the compact table.

The NSH can be shown to have two critical settings for the parameter F' [5]. We demonstrate this for the
example game in Figure 2. In this example game (n = 3, m = 2, ¢ = 1), the two critical values of F' are 3
and 1.5. Regardless of I, the fully defective joint strategy nc = 0 is always a strong Nash Equilibrium. For
F > 3, there is no incentive to deviate from nc = 3 (a single deviating cooperator would obtain 8/3 < 3),
so ng = 3 is a strong equilibrium. For 1.5 < F' < 3, we find a strong equilibrium for two cooperators
and one defector (nc = 2). A deviating cooperator obtains 0 < 1/3, whereas a deviating defector obtains
1 < 4/3. For F < 1.5, only the fully defective equilibrium remains.

More generally, there are two interesting regions of the compact payoff table, as visualized in Figure 3.
For n players and a minimal coalition size of m, the interesting regions are around nc = n and n¢c = m.
As can be seen in the leftmost table, player switches from the fully cooperative equilibrium if (n — 1) F'/n >
F — ¢, or F' < cn. However, this also means that (n — 2)F/n > (n — 1)F/n —¢,sonc = n — 11is
not an equilibrium either, et cetera. Thus, nc = n is the only possible equilibrium in the leftmost table,
i.e. for F' > cn. In the rightmost table, we show that the situation changes below nc = m, which may be
an equilibrium. This minimal cooperative equilibrium is destroyed if mF/n — ¢ < 0, i.e. if F' < cn/m.
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Figure 2: Different equilibria result from the parameter F' (n = 3, m = 2, ¢ = 1).
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Figure 3: Interesting regions of the generalized compact payoff table.

As a result, the two critical parameter settings are F' = cn and F' = ¢n/m. For F > cn, we expect full
cooperation. For cn > F > cn/m, we expect m cooperators and n — m defectors. For F' < ¢n/m, we
expect full defection. There are two exceptions: if m = 1, these two settings are identical, i.e. F' = cn; if
m = n, the only critical setting is F' = ¢ since n¢ } m.

3 Lenient Frequency Adjusted Q-learning

Many multi-agent learning scenarios take the form of coordination games. When multiple independent
agents learn together in such an environment, it can often happen that they converge to suboptimal solu-
tions. Initial mis-coordination on a globally optimal solution may result in decreased payoffs, and as a result
the learner’s preference for the corresponding action may also decrease. In the end, this can drive the agents
away from the global optimum, resulting in suboptimal behavior. This effect can be reduced by introducing
leniency, i.e., by ignoring initial mis-coordination. It has been shown that leniency can greatly improve the
accuracy of an agent’s projection of the search space in the beginning of the learning process [6]. It thereby
overcomes the problem that initial mis-coordination might lead to suboptimal solutions in the long run.

Based on this notion of leniency, Panait et al. [7] presented an evolutionary model of lenient reinforce-
ment learning and demonstrated the advantages of this model over traditional, non-lenient learners. In this
model, leniency towards others is achieved by having a learning agent collect « rewards (or payoffs) for a
single action before it updates the value of this action based on the highest of those x rewards. This results
in a fixed degree of leniency, expressed by the value of k. In previous work, we proposed a reinforcement
learning algorithm called Lenient Frequency Adjusted Q-learning (Lenient FAQ) that implements the evo-
lutionary model exactly, thereby inheriting its advantages [2].

The Lenient FAQ algorithm is a lenient version of Frequency Adjusted Q-learning (FAQ), a recent im-
provement over traditional Q-learning that is less sensitive to different initializations and therefore more
robust [4]. The learning update rule of single-state FAQ-learning is given by
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where Q;(¢) is the estimated value of action ¢ at time ¢, x; is the probability of selecting action ¢ according to
the learner’s policy, § controls the frequency adjustment, « is a step size parameter, and 7;(¢) is the reward
received for taking action ¢ at time t. FAQ-learning only updates the value of the action that was previously
selected; the value of all other actions remains unchanged. Based on the action-value function @), a new
policy can derived, e.g. by using the Boltzman exploration mechanism
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Table 1: Overview of the evolutionary dynamics of FALA [11], FAQ [11, 4] and Lenient FAQ [7], for three
players with strategies x, y and z, and three-dimensional payoff matrix A.

This mechanism uses a temperature parameter 7 to control the balance between exploration and exploitation.
A high temperature drives the mechanism towards exploration by leveling the action selection probabilities,
whereas a low temperature promotes exploitation by favoring actions with a high Q)-value.

Lenient FAQ is based on the same mechanism as the lenient evolutionary model: x rewards are collected
for a particular action before the (Q-value of that action is updated based on the highest of those rewards.
The @Q-value update itself it equal to that of standard FAQ, given in Equation 1.

It has been shown both theoretically [7] and empirically [2] that leniency is an advantageous strategy in
2-player coordination games. Increasing the degree of leniency makes it possible to guarantee an arbitrary
high certainty of converging to the global optimum of the game.! In this paper, we investigate lenient learning
in a coordination game with more than 2 players.

4 Experiments and Results

In this section we describe the experiments performed for the analysis of the game, together with the re-
sults. We compare lenient and non-lenient FAQ-learning, as well as the Finite Action-set Learning Au-
tomata (FALA) algorithm with a Linear Reward-Inaction (L _r) learning scheme [9]. The latter algorithm
is chosen because it only includes selection, and no mutation. The algorithms are compared using various
parameter settings for the 3-player Stag Hunt game defined in Section 2; of main importance for the analysis
is the basin of attraction for the different pure strategy Nash equilibria.

Basin of Attraction

A basin of attraction for a certain equilibrium is defined as the region of the policy space for which learning
will eventually converge to that equilibrium. In order to calculate a basin, we iterate over the evolutionary
model (replicator equations) of the learning algorithm at hand. Starting from 1,000,000 uniformly-spaced
points in the policy space, we evaluate to which equilibrium the dynamics converge. This way, we are able
to calculate the region of the policy space that constitutes the basin of attraction for each equilibrium.

The evolutionary models are given in Table 1. In the replicator equations, x is the player’s current strat-
egy, u; is the expected payoff for playing action ¢ against two other players with strategies y and z, and
therefore 27 u is the average expected payoff. The probability of selecting action 4, denoted as x;, increases
whenever the expected payoff of action i is larger than the average expected payoff, and decreases when
the expected payoff is lower. For Lenient FAQ, the expected lenient payoff of an action is calculated by
weighting each possible payoff by the probability that it is the maximum of x random trials, as expressed by
the extra summation terms in the equation for u; [7].

As can be seen, FALA only includes selection, whereas FAQ and Lenient FAQ also include a mutation
term. The influence of this term depends on the temperature 7, a high temperature leads to more mutation,
whereas a low temperature prefers selection. For these experiments, we set the temperature to a low value
(0.01) to enable convergence to strong equilibria. Furthermore, for FALA we set a = 0.001, and for FAQ
and Lenient FAQ we set & = 0.00001, 8 = 0.01 and k € {3,5}. The step size « is deliberately kept low to

I'We note that lenient learning may not be a best response against itself; tailored counter-strategies that exploit leniency may exist
in some classes of games.
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Figure 4: This chart shows the basin of attraction, in percentage of the policy space, for each of the pure
Nash equilibria, for n = 3, ¢ = 1, and varying m and F.

ensure that the dynamics of the actual learning algorithms closely resemble those of the evolutionary model.
The other given settings are known to work well from experience [2].

Results for n = 3, ¢ = 1, and varying m and F’ are visualized in Figure 4. For m = 1 the game is fully
defective for F' < n and fully cooperative for /' > n. This is not depicted in the figure.

For m = 2 (top), the two critical values are F' = 1.5 and F' = 3, as is clearly visible in the chart. For
F < 1.5, the game is an NPD and therefore fully defective. For 1.5 < F' < 3 we observe the expected
equilibria (nc¢ = 2 and nc = 0). FALA and FAQ perform similarly, whereas Lenient FAQ increases the
basin of attraction for the minimally cooperative equilibrium. For F' = 3, we clearly observe a turning point
where defect is still a strong NE, but the weak cooperative NE has a larger basin of attraction for FALA. FAQ
and Lenient FAQ include mutation, and therefore do not fully converge. Instead, they end up in between
the fully and partially cooperative equilibria, depending on the degree of leniency. This special scenario
is analyzed in more detail below. For F' > 3, the game is a NSH with a larger preference for the fully
cooperative equilibrium. Here again Lenient FAQ has a larger basin for the fully cooperative equilibrium
than the non-lenient learners.

For m = 3 (bottom), the critical value lies at F' = 1 (see also Figure 3). The game is an NPD for F' < 1,
and a NSH for F' > 1. We visualize only settings for F' that yield an NSH as any NPD leads to a fully
defective game for all algorithms. For m = 3 and F' > 1 it is clear that FALA and FAQ again perform
similarly, i.e., mutation does not play a big role as long as the temperature is kept low. In contrast, Lenient
FAQ has a larger basin for the fully cooperative equilibrium, increasing with the degree of leniency.

(Non-)Convergence to weak Nash equilibria

As mentioned previously, the scenario where m = 2 and F' = 3 proves interesting, as it is a switching point
between two different classes of the game. In this scenario, nc = 0 is a strong NE, and n¢ = 3 is a weak
NE. This means that, at the equilibrium nc = 3, no player has an incentive to switch, but at the same time
no player has an incentive to stay: both actions result in the same payoff. In order to analyze this scenario in
more detail, we study the evolutionary dynamics as well as actual learning traces in the three-dimensional
policy space, shown in Figure 5.

The learning traces are calculated by running the actual learning algorithms, starting at 27 uniformly
distributed points in the policy space, and playing the iterated NSH. The simulations are run for 200,000
iterations to ensure approximate convergence (if it occurs), and results are averaged over 10 experiments to
produce smooth learning traces. As there are only two actions in this game, 1 = 1 — 2 and therefore it is
sufficient to only look at the probability of selecting the first action, 1, without loss of information. Plotting
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Figure 5: Evolutionary dynamics (top) and actual learning traces (bottom) of three different learning algo-
rithms for m = 2 and F' = 3. This game has two pure Nash equilibria, O (nc = 0, strong NE) and [
(nc = 3, weak NE).

x1 against y; and z; provides insight in to the learning dynamics of the different algorithms.

Figure 5 clearly illustrates the differences in behavior of the learners. We observe a notable distinction
between the purely selection-based learning algorithm, FALA, and the selection-mutation algorithms FAQ
and Lenient FAQ. Whereas FALA still converges to the weak equilibrium, FAQ and most notably Lenient
FAQ are driven away from the equilibrium, even with a low temperature. With a higher temperature, the
effect would be even more clear. More research in this area is currently being performed.

5 Conclusion

The multiplayer Stag Hunt game (NSH) [5] is an interesting and well-defined game for those researchers in-
terested in scaling their analyses and approaches to game-theoretic interactions with more than two players.
The NSH exhibits two interesting critical parameter settings for which equilibria shift. This is in contrast
to (1) the multiplayer Prisoners’ Dilemma, which always has one Pareto-dominated defective Nash equilib-
rium, regardless of chosen parameters and group sizes, and (2) the 2-player Stag Hunt, which always has
two strong pure Nash equilibria. We provide an intuitive analysis to demonstrate these critical parameter
settings.

Given the complexity of the game, we are interested in the learning dynamics of three different reinforce-
ment learning algorithms: Finite Action-set Learning Automata, and lenient and regular Frequency Adjusted
Q-learning. By applying both the evolutionary models of the learning algorithms as well as the algorithms
themselves in simulation we find that the two non-lenient learners, FALA and FAQ, perform similarly in
general but deviate considerably with respect to weak Nash equilibria. The mutation term of FAQ drives
the algorithm away from weak equilibria whereas a purely selection-based learner such as FALA may still
converge to such equilibria.

Moreover, we show that leniency offers the same advantages in 3-player coordination games as in 2-
player games. Cooperative or partially cooperative equilibria have a larger basin of attraction under lenient
learning than under regular learning, and the cooperative basin increases with increasing degree of leniency.
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