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Abstract. Many real-world scenarios can be modelled as multi-agent
systems, where multiple autonomous decision makers interact in a single
environment. The complex and dynamic nature of such interactions pre-
vents hand-crafting solutions for all possible scenarios, hence learning is
crucial. Studying the dynamics of multi-agent learning is imperative in
selecting and tuning the right learning algorithm for the task at hand. So
far, analysis of these dynamics has been mainly limited to normal form
games, or unstructured populations. However, many multi-agent systems
are highly structured, complex networks, with agents only interacting lo-
cally. Here, we study the dynamics of such networked interactions, using
the well-known replicator dynamics of evolutionary game theory as a
model for learning. Different learning algorithms are modelled by alter-
ing the replicator equations slightly. In particular, we investigate lenience
as an enabler for cooperation. Moreover, we show how well-connected,
stubborn agents can influence the learning outcome. Finally, we investi-
gate the impact of structural network properties on the learning outcome,
as well as the influence of mutation driven by exploration.

Keywords: Reinforcement Learning, Social Networks, Replicator Dy-
namics

1 Introduction

Understanding the dynamics of networked interactions is of vital importance
to a wide range of research areas. For example, these dynamics play a central
role in biological systems such as the human brain [10] or molecular interaction
networks within cells [4]; in large technological systems such as the word wide
web [16]; in social networks such as Facebook [2, 18, 37]; and in economic or
financial institutions such as the stock market [12, 22]. Recently, researchers have
focused on studying the evolution of cooperation in networks of self-interested
individuals, aiming to understand how cooperative behaviour can be sustained
in the face of individual selfishness [21, 26, 30, 31].

Many studies have targeted the discovery of structural properties of networks
that promote cooperation. For instance, Santos and Pecheco show that coopera-
tion has a higher chance of survival in scale-free networks [31]; Ohtsuki et al. find
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a relation between the cost-benefit ratio of cooperation and the average node de-
gree of a network that determines whether cooperation can be sustained [27]; and
Van Segbroeck et al. investigate heterogeneity and clustering and concludes that
these structural properties influence behaviour on the individual rather than the
overall network [38]. Others have focused on the role of the particular interaction
model between neighbouring nodes in determining the success of cooperation.
For example, Hofmann et al. simulate various update rules in different network
topologies and find that the evolution of cooperation is highly dependent on the
combination of update mechanism and network topology [21].

Cooperation can also be promoted using some incentivising structure in which
defection is punishable [9, 32], or in which players can choose beforehand to
commit to cooperation for some given cost [19]. Both incentives increase the
willingness to cooperate in such scenarios where defection would be individually
rational otherwise. Allowing individuals to choose with whom to interact may
similarly sustain cooperation, e.g. by giving individuals the possibility to break
ties with ‘bad’ neighbours and replacing them with a random new connection. For
example, Zimmermann and Egúıluz show how such a mechanism may promote
cooperation, albeit sensitive to perturbations [42]. Similarly, Edmonds et al. use
a tag-based system through which agents identify whom to interact with [17].
Allowing agents to choose which tag to adopt gives rise to social structures that
can enhance cooperation. Finally, control theory is used by Bloembergen et al.
to show how external influence on a subset of nodes can drive the behaviour in
social networks [7].

Most of these works share one important limitation, in that they consider only
imitation-based learning dynamics. Typically in such models, individual agents
update their behaviour by replicating the successful behaviour of their peers. In
evolution terms, the update process only incorporates selection. However, evo-
lutionary success often stems from the interplay between selection on the one
hand, and mutation on the other. Closely related is the exploration/exploitation
dilemma that is well-known in the field of reinforcement learning, where explo-
ration plays the role of mutation, and exploitation yield selection.

Here, we bridge these two interpretations by analysing selection-mutation
dynamics as a predictive model for multi-agent reinforcement learning, where
interaction between agents is modelled as a structured social network. In par-
ticular, we investigate lenience [6, 29] as an enabler for cooperation. We report
a great difference between pure selection dynamics, and selection-mutation dy-
namics that include leniency. Moreover, we show how a subset of stubborn agents
can influence the learning outcome. We find that well connected agents exert a
large influence on the overall network behaviour, and as such can drive the
learning process towards a desired outcome. Furthermore, we show how struc-
tural network properties, such as size and average degree, influence the learning
outcome. Finally, we observe that certain network structures give rise to clusters
of cooperators and defectors coexisting.

In contrast to the majority of related work, which almost exclusively fo-
cuses on Prisoner’s Dilemma type interactions, we use the Stag Hunt to describe
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the interaction between agents. The Stag Hunt provides an intuitive model of
many real-world strategic (economic) interactions, such as the introduction of
potentially beneficial new technologies that require a critical mass of adopters
in order to pay off. As such, not switching (defecting) is a safe choice, whereas
social cooperation (adoption) may yield higher rewards for all.

This paper proceeds as follows. Firstly, we explain required background
knowledge on learning, evolutionary game theory, and networks, in Section 2.
Secondly, Section 3 outlines the methodology used in this work, in particular
the formal link between multi-agent learning and the replicator dynamics. We
present our model of networked replicator dynamics in Section 4, accompanied
by a range of experiments in Section 5. The paper is closed with main conclusion
of this study in Section 6.

2 Background

This section gives an overview of relevant background needed for the remainder of
this work. The section is split into three main parts. Section 2.1 briefly introduces
reinforcement learning; Section 2.2 describes basic concepts of evolutionary game
theory; and Section 2.3 details networks.

2.1 Reinforcement learning

The reinforcement learning (RL) paradigm is based on the concept of trial-and-
error learning, allowing agents to optimise their behaviour without explicitly
requiring a model of the environment [34]. The reinforcement learning agent
continuously interacts with the environment, perceiving its state, taking actions,
and observing the effect of those actions. The agent needs to balance exploration
and exploitation in order to ensure good intermediate rewards while avoiding
getting stuck in local optima. RL strategies are powerful techniques for opti-
mising control of large scale control problems [15]. Early RL research focused
on single-agent problems where the full state knowledge of the agent is known.
Later on, RL has been applied to multi-agent domains as well [11]. The compu-
tational complexity of multi-agent reinforcement learning (MARL) algorithms
is much higher than in single-agent problems, since (near) optimal behaviour of
one agent depends on other agents’ policies as well.

Despite this challenge, single-agent RL techniques have been applied suc-
cessfully to multi-agent settings. Arguably the most famous example of an RL
algorithm is the model-free temporal difference algorithm Q-learning [39]. Q-
learning1 maintains a value function over actions, Qi, which is updated at every
time step t based on the reward r received after taking action ai:

Qi(t+ 1)← Qi(t) + α
(
r −Qi(t)

)
(1)

1 We describe stateless Q-learning, as this version is suitable for the work presented
in this paper.



4 Learning in Networked Interactions

(
a11, b11
a21, b21

a12, b12
a22, b22

)
C
D

C D(
A,A
B,C

C,B
D,D

)
C
D

C D(
4, 4
3, 1

1, 3
3, 3

)
Fig. 1. General payoff bi-matrix (A,B) for two-player two-action games (left) and the
Stag Hunt (center), and a typically valued instance of the Stag Hunt (right)

where α ∈ [0, 1] is the learning rate that determines how quickly Q is updated
based on new reward information. Choosing which action to take is crucial for
the learning process. The Boltzmann exploration scheme is often used as it pro-
vides a way to balance exploration and exploitation by selecting an appropriate
temperature τ . The policy x that determines the probability for choosing each
action a is computed as

xi =
e
Qi/τ∑
j e

Qj/τ
(2)

A high temperature drives the mechanism towards exploration, whereas a low
temperature promotes exploitation.

2.2 Evolutionary Game Theory

The strategic interaction between agents can be modelled in the form of a game,
where each player (agent) has a set of actions, and a preference over the joint
action space that is captured in the received payoffs. For two-player games, the
payoffs can be represented by a bi-matrix (A,B), that gives the payoff for the
row player in A, and the column player in B, see Figure 1 (left). The goal of each
player is to decide which action to take, so as to maximise their expected payoff.
Classical game theory assumes that full knowledge of the game is available to all
players, which together with the assumption of individual rationality does not
necessarily reflect the dynamic nature of real world interaction. Evolutionary
game theory (EGT) relaxes the rationality assumption and replaces it by the
concepts of natural selection and mutation from evolutionary biology [24, 41].
Where classical game theory describes strategies in the form of probabilities over
pure actions, EGT models them as populations of individuals, each of a pure
action type, where the population share of each type reflects its evolutionary
success.

Central to EGT are the replicator dynamics, that describe how this popu-
lation of individuals evolves over time under evolutionary pressure. Individuals
are randomly paired to interact, and their reproductive success is determined
by their fitness which results from these interactions. The replicator dynamics
dictate that the population share of a certain type will increase if the individuals
of this type have a higher fitness than the population average; otherwise their
population share will decrease. The population can be described by the state
vector x = (x1, x2, . . . , xn)T, with 0 ≤ xi ≤ 1 ∀i and

∑
i xi = 1, representing the

fractions of the population belonging to each of n pure types. Now suppose the
fitness of type i is given by the fitness function fi(x), and the average fitness of
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the population is given by f̄(x) =
∑
j xjfj(x). The population change over time

can then be written as
ẋi = xi

[
fi(x)− f̄(x)

]
(3)

In a two-player game with payoff bi-matrix (A,B), where the two players use
the strategies x and y respectively, the fitness of the first player’s ith candidate
strategy can be calculated as

∑
j aijyj . Similarly, the average fitness of popula-

tion x is defined as
∑
i xi
∑
j aijyj . In matrix form, this leads to the following

multi-population replicator dynamics:

ẋi = xi
[
(Ay)i − xTAy

]
ẏi = yi

[
(xTB)i − xTBy

] (4)

The Stag Hunt is a game that describes a dilemma between safety and social
cooperation [33]. The canonical payoff matrix of the Stag Hunt is given in Fig. 1
(center), where A > B ≥ D > C. Social cooperation between players is rewarded
with A, given that both players choose to cooperate (action C). As the players
do not foresee each others’ strategies, the safe choice of players is to defect
(action D), since typically A + C < B + D (see Figure 1, right). Although
cooperation pays off more for both players, defection is individually rational
when the opponent strategy is unknown. As both players reason like this, they
may end up in a state of mutual defection, receiving D < A each, hence the
dilemma.

The Stag Hunt is typically said to model individuals that go out on a hunt,
and can only capture big game (e.g. a stag) by joining forces, whereas smaller
pray (e.g. a hare) can be captured individually. However, it can also be thought
of to describe the introduction of a new technology, which only really pays off
when more people are using it. Early adopters risk paying the price for this. As
such, despite its simplicity the Stag Hunt is an useful model for many real-world
strategic dilemmas.

2.3 Networked Interactions

Networks describe collections of entities (nodes) and the relation between them
(edges). Formally, a network can be represented by a graph G = (V,W) consist-
ing of a non-empty set of nodes (or vertices) V = {v1, . . . , vN} and an N × N
adjacency matrix W = [wij ] where non-zero entries wij indicate the (possibly
weighted) connection from vi to vj . If W is symmetrical, such that wij = wji
for all i, j, the graph is said to be undirected, meaning that the connection from
node vi to vj is equal to the connection from node vj to vi. In social networks,
for example, one might argue that friendship is usually mutual and hence undi-
rected. This is the approach followed in this work. In general however this need
not be the case, in which case the graph is said to be directed, and W asym-
metrical. The neighbourhood, N, of a node vi is defined as the set of nodes it is
directly connected to, i.e. N(vi) = ∪jvj : wij > 0. The node’s degree deg[vi] is
given by the cardinality of its neighbourhood.
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Several types of networks have been proposed that capture the structural
properties found in large social, technological or biological networks, two well-
known examples being the small-world and scale-free models. The small-world
model exhibits short average path lengths between nodes and high clustering, two
features often found in real-world networks [40]. Another model is the scale-free
network, characterised by a heavy-tailed degree distribution following a power
law [3]. In such networks the majority of nodes will have a small degree while
simultaneously there will be relatively many nodes with very large degree, the
latter being the hubs or connectors of the network. For a detailed description of
networks and their properties, the interested reader is referred to [22].

3 Evolutionary models of multi-agent learning

Multi-agent learning and evolutionary game theory share a substantial part of
their foundation, in that they both deal with the decision making process of
bounded rational agents, or players, in uncertain environments. The link between
these two fields is not only intuitive, but also formally proven that the continuous
time limit of Cross learning converges to the replicator dynamics [8].

Cross learning [14] is one of the most basic stateless reinforcement learning
algorithms, which updates its policy x based on the reward r received after
taking action j as

xi ← xi +

{
r − xir if i = j
−xir otherwise

(5)

A valid policy is ensured by the update rule as long as the rewards are normalised,
i.e., 0 ≤ r ≤ 1. Cross learning is closely related to learning automata (LA) [25,
35]. In particular, it is equivalent to a learning automaton with a linear reward-
inaction (LR−I) update scheme and a learning step size of 1.

We can estimate E [∆xi], the expected change in the policy induced by Equa-
tion 5. Note that the probability xi of action i is affected both if i is selected
and if another action j is selected, and let Ei[r] be the expected reward after
taking action i. We can now write

E [∆xi] = xi

[
Ei[r]− xiEi[r]

]
+
∑
j 6=i

xj

[
− Ej [r]xi

]
= xi

[
Ei[r]−

∑
jxjEj [r]

]
(6)

Assuming the learner takes infinitesimally small update steps, we can take the
continuous time limit of Equation 6 and write is as the partial differential equa-
tion

ẋi = xi

[
Ei[r]−

∑
jxjEj [r]

]
In a two-player normal form game, with payoff matrix A and policies x and y
for the two players, respectively, this yields

ẋi = xi
[
(Ay)i − xTAy

]
(7)
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which are exactly the multi-population replicator dynamics of Equation 4.
The dynamical model of Equation 7 only describes the evolutionary process

of selection, as Cross learning does not incorporate an exploration mechanism.
However, in many scenarios mutation also plays a role, where individuals not only
reproduce, but may change their behaviour while doing so. Given a population
x as defined above, we consider a mutation rate Eij indicating the propensity of
species j to mutate into i (note the order of the indices), such that, ∀i:

Eij ≥ 0 and
∑
i

Eij = 1

Adding mutation to Equation 7 leads to a dynamical model with separate selec-
tion and mutation terms [20], given by

ẋi = xi

[
(Ay)i − xTAy

]
︸ ︷︷ ︸

selection

+
∑
j

(
Eijxj − Ejixi

)
︸ ︷︷ ︸

mutation

(8)

By slightly altering or extending the model of Equation 7 different RL al-
gorithms can be modelled as well. A selection-mutation model of Boltzmann
Q-learning (Eqs. 1 and 2) has been proposed by Tuyls et al. [36]. The dynamical
system can again be decomposed into terms for exploitation (selection follow-
ing the replicator dynamics) and exploration (mutation through randomization
based on the Boltzmann mechanism):

ẋi =
αxi
τ

[
(Ay)i − xTAy

]
︸ ︷︷ ︸

selection

−αxi
[

log xi −
∑
kxk log xk

]
︸ ︷︷ ︸

mutation

(9)

Technically, these dynamics model the variant Frequency Adjusted Q-learning
(FAQ), which mimics simultaneous action updates [23].

Lenient FAQ-learning (LFAQ) [6] is a variation aimed at overcoming con-
vergence to suboptimal equilibria by mis-coordination in the early phase of the
learning process, when mistakes by one agent may lead to penalties for others,
irrespective of the quality of their actions. Leniency towards such mistakes can
be achieved by collecting κ rewards for each action, and updating the Q-value
based on the highest of those rewards. This causes an (optimistic) change in the
expected reward for the actions of the learning agent, incorporating the prob-
ability of a potential reward for that action being the highest of κ consecutive
tries [29]. The expected reward for each action Ay in Equation 9 is replaced by
the utility vector u, with

ui =
∑
j

aijyj

[(∑
k:aik≤aij yk

)κ
−
(∑

k:aik<aij
yk

)κ]
∑
k:aik=aij

yk
(10)

Each of these models approximates the learning process of independent rein-
forcement learners in a multi-agent setting. Specifically, they are presented for
the case of two-agent interacting in a normal-form game. Extensions to n-players
are straightforward, but fall outside the scope of this work. In the next section
we will describe our extension of networked replicator dynamics.
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Algorithm 1 Update procedure for the NRD model

1: initialize X
2: Ẋ ← 0
3: for j = 1 to N do
4: for all xk ∈ N(vj) do
5: ẋj

i ← ẋj
i + xj

i

[
(Axk)i − xjTAxk

]
6: end for
7: ẋj ← ẋj

|N(vj)|
8: end for
9: X ← X + Ẋ

4 Networked Replicator Dynamics

In this work, agents are placed on the nodes of a network, and interact only
locally with their direct neighbours. Assume a graph G with N nodes as de-
fined in Section 2.3, with N agents placed on the nodes {v1, . . . , vN}. If we
define each agent by its current policy x we can write the current network state
X = (x1, . . . ,xN ). The aim of this work is study how X evolves over time, given
the specific network structure and learning model of the agents. For this pur-
pose, we introduce networked replicator dynamics (NRD), where each agent (or
node) is modelled by a population of pure strategies, interacting with each if its
neighbours following the multi-population replicator dynamics of Equation 4.

The update mechanism of the proposed networked replicator dynamics is
given in Algorithm 1. At every time step, each agent (line 3) interacts with each
of its neighbours (line 4) by playing a symmetric normal-form game defined by
payoff-matrix A. These interactions are modelled by the replicator dynamics
(line 5), where each neighbour incurs a potential population change, ẋ, in the
agent. Those changes are normalised by the degree, |N(vi)|, of the agent’s node
(line 7). Finally, all agents update their state (line 9).

This model is flexible in that it is independent of the network structure, it can
be used to simulate any symmetric normal form game, and different replicator
models can easily be plugged in (line 5 of Algorithm 1). This means that we can
use any of the dynamical models presented in Section 3 as update rule, thereby
simulating different MARL algorithms.

5 Experimental Validation

In this section we present experimental results of the networked replicator dy-
namics model in various setups. In particular, we use Barabási-Albert scale-
free [3] and Watts-Strogatz small world [40] networks. The first set of experi-
ments compares the different learning models, focusing in particular on the role
of exploration and lenience in the learning process. We then analyse lenience in
more detail, investigating the influence of the degree of lenience on the speed of
convergence. Hereafter, we look at the relation between network size and degree
with respect to the equilibrium outcome. The last set of experiments investigates
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(a) Small World (b) Scale Free

Fig. 2. Dynamics of a networked Stag Hunt game in small world and scale free net-
works. The figure shows the mean network state in equilibrium (gray scale) for different
algorithms (x-axis) and average network degree (y-axis).

the role of stubborn nodes, which do not update their strategy, on the resulting
network dynamics. All experiments use the Stag Hunt (page 4, Figure 1, right)
as the model of interaction.

5.1 Comparing different learning models

We compare the different dynamical models of multi-agent learning presented
before in Section 3. We use the following abbreviations: CL is Cross learning
(Eq. 7); CL+ is CL with mutation (Eq. 8); FAQ is frequency adjusted Q-learning
(Eq. 9); LF-κ is lenient FAQ with degree of lenience κ (Eq. 10). In order to ensure
smooth dynamics we multiply the update ẋ of each model by a step size α. CL
and CL+ use α = 0.5, FAQ uses α = 0.1, and LF uses α = 0.2. Moreover, the
exploration (mutation) rates are set as follows: CL+ uses Eij = 0.01 for all i 6= j,
and Eii = 1−

∑
j 6=i Eij ; and FAQ and LF use τ = 0.1. We simulate the model on

100 randomly generated networks of N = 50 nodes (both scale free and small
world, the latter with rewiring probability p = 0.5), starting from 50 random
initial states X ∈ RN , and report the average network state X̄ = 1

N

∑
i x

i after
convergence. Since the Stag Hunt only has two actions, the full state can be
defined by x1, the probability of the first action (cooperate).

Figure 2 shows the results of this comparison. The gray scale indicates the
final network state X̄ after convergence, where black means defection, and white
means cooperation. Note the non-linear scale, this is chosen to highlight the de-
tails in the low and high ranges of X̄ . Several observations can be made based on
these results. First of all, there is a clear distinction between non-lenient algo-
rithms, which converge mostly to defection, and lenient algorithms that converge
toward cooperation. As expected, lenience indeed promotes cooperation also in
a networked interactions. Equally striking is the lack of distinction between pure
selection (CL) and selection-mutation (CL+, FAQ) models. Adding mutation
(or exploration) in this setting has no effect on the resulting convergence. In-
creasing the mutation rate does lead to a change at some point, however, this
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Fig. 3. Example of the convergence of LF-2 on a Scale Free (top) and Small World (bot-
tom) network with average degree 2 and 4, respectively. The network is split between
cooperators (white) and defectors (black) in the final equilibrium state.

is to the exten that the added randomness automatically drives the equilibrium
away from a state of pure defection.

The most interesting results of Figure 2 are those of LF-2. Here, we can ob-
serve a range of outcomes, depending on the average network degree. A more
strongly connected network yields a higher probability of cooperation in equi-
librium. Moreover, LF-2 is the only algorithm that yield an “indecisive” final
state, that is significantly removed from pure cooperation or defection. In order
to investigate this situation further, we look in detail at the dynamics of a sin-
gle network. Figure 3(a) shows the network state X over time for one specific
(randomly drawn) initial state of a scale free network with average degree 2.
Clearly, the network is split into clusters of cooperators and defectors, no unani-
mous outcome is reached. The final state is highlighted in Figure 3(b), depicting
the network structure and state of each node, and clearly showing two clusters.
Depending on initial conditions, different splits can be observed.
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Table 1. Time to convergence (mean and std. dev.) of lenient FAQ, for Small World
and Scale Free networks of various degree d.

Algorithm Small World Scale Free
d = 2 d = 4 d = 6 d = 8 d = 2 d = 4 d = 6 d = 8

LF-2 148 (71) 72 (50) 47 (21) 43 (12) 81 (53) 50 (28) 41 (7) 40 (6)
LF-3 72 (58) 36 (3) 35 (1) 35 (1) 44 (21) 36 (2) 35 (2) 35 (1)
LF-4 43 (24) 34 (1) 34 (1) 34 (1) 38 (13) 34 (1) 34 (1) 34 (1)
LF-6 35 (12) 33 (1) 33 (1) 33 (1) 35 (8) 33 (1) 33 (1) 33 (1)

Similar results can be observed in small world networks. Figures 3(c)-(d) show
the dynamics in an example network with average degree 4. Again, a cluster
of defectors is maintained in equilibrium amongst a majority of cooperators.
Identifying specific structural network properties that lead to clustering is a
main question for future work.

5.2 The effect of lenience on convergence

In this set of experiments, we take a closer look at the influence of leniency on the
dynamics and convergence of the network. Using the same set of networks as in
the previous section, we zoom in only on the lenient algorithms and compare their
convergence speed for the different networks. Table 1 lists the number of time
steps to convergence, again averaged over 100 networks with 50 random initial
states. Two trends are clearly visible: increasing the degree of lenience decreases
the convergence time (most notably for degree 2 networks); and increasing the
network degree similarly decreases the convergence time (most notably for LF-
2). These results can be explained intuitively, as lenience pushes the learning
process in the direction of cooperation, whereas a higher network degree yield
more interactions per time step, and hence faster convergence. The fact that no
convergence below 33 time steps is observed, independent of the network type,
can be explained by the limit that the step size α and the inherent dynamics of
the model pose.

5.3 The relation between network size and degree

Here we investigate the role that both network size and average degree play
in determining the equilibrium outcome of the learning process. Specifically,
we compare networks of different sizes with a fixed degree, with networks which
have a degree proportional to their size. Figure 4 shows the results for both small
world and scale free networks. For each combination we simulate 100 randomly
generated networks, each using 10 randomly drawn initial states, following the
LF-2 dynamics. The figure shows that the equilibrium state is independent of the
network size if the degree is kept fixed, whereas the probability of cooperation
increases when the degree grows with the network. This result shows that a
more strongly connected network tends to cooperate more than one with sparse
interactions. Intuitively, this can be explained by the inherent dynamics of the
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Fig. 4. The equilibrium state for different network sizes, for Small World and Scale
Free networks using LF-2. Fixed degree is 2, proportional degree is 10% of the network
size.

Stag Hunt: a critical mass of cooperators is required for cooperation to be a
beneficial strategy. In more densely connected networks, this critical mass is
reached more easily.

5.4 The influence of stubborn agents

Finally, we look at the influence of stubborn agents on the final state. Stubborn
agents are ones that do not update their state, regardless of the actions of their
neighbours or the rewards they receive. These agents could be perceived as reg-
ulating bodies in financial networks, or politicians in social networks trying to
spread their views.

Here, we select the highest degree nodes in the network to be stubborn -
future work will investigate this issue further. Figure 5 shows the results of
an extensive set of experiments, simulating networks of different sizes N ∈
{20, 40, 60, 80, 100} with average degree 2, and varying the percentage of stub-
born agents. The stubborn agents keep their state fixed at x1 = 0.95.2 Interest-
ingly, the results are independent of the network size when the degree is fixed,
and hence the results in Figure 5 are averaged. We can observe that stubborn
agents pull the whole network toward cooperation. Moreover, we see that this
effect diminishes as the percentage goes up. Scale free networks in particular
show this effect, which can be explained by the fact the in such networks a small
number of “hubs” take part in a majority of the connections. Once these hubs
are cooperative, the rest follows quickly.

2 Note that we exclude these fixed nodes from the results presented here, however a
similar trend can be observed it they are included.
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Fig. 5. The influence of the number of stubborn agents on final network state, for
Small World and Scale Free networks of degree 2.

6 Conclusions

We have proposed networked replicator dynamics (NRD) that can be used to
model learning in (social) networks. The model leverages the link between evo-
lutionary game theory and multi-agent learning, that exists for unstructured
populations, and extends it to settings in which agents only interact locally with
their direct network neighbours. We evaluated this model in a range of exper-
iments, showing the effect of various properties of both network and learning
mechanism on the resulting equilibrium state. We found that lenience is an en-
abler for cooperation in a networked Stag Hunt game. A higher degree of lenience
yields a higher probability of cooperation in this game; moreover this equilib-
rium is reached faster. More densely connected networks promote cooperation
in a similar way, and stubborn agents can pull the network towards their desired
state, in particular when they are well connected within the network. The latter
finding is of particular interest to the scenario of adoption of new technologies,
as it shows that getting few key players to opt-in may pull the whole network to
adopt as well.

There are many interesting avenues for future work stemming from these
initial findings. The networked replicator dynamics can be further validated by
comparing these findings with the dynamics that would result from placing ac-
tual learning agents, rather than their dynamical model, on the network. More-
over, one can look at networks in which different types of learning mechanisms
interact. E.g., each agent is modelled by a different dynamical model. This can
be easily integrated in the NRD. Furthermore, different games can be studied
as the model for various real-world scenarios, such as the N-player Stag Hunt
which yields richer dynamics than its two-player counterpart [5, 28]. Finally, an
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interesting direction for further research would be to extend the NRD model for
more complex learning algorithms. For example, it has been shown that adding
memory can help sustain cooperation by taking past encounters into account,
e.g. by recording the opponent’s intention [1] or by the inclination to stick to
previous actions [13].
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