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Introduction

The interaction of multiple autonomous agents gives rise to highly dynamic and non-
deterministic environments, contributing to the complexity of for instance automated
financial markets, the smart grid, or multi-robot coordination. Due to the sheer num-
ber of situations that may arise it is not possible to foresee and program the optimal
behaviour for each one of those beforehand. Consequently, it becomes essential for
the success of the system that the agents can learn their optimal behaviour and adapt
to new situations or circumstances. The field of multi-agent learning is involved with
precisely this problem. The past two decades have seen the emergence of reinforce-
ment learning, both in single and multi-agent settings, as a strong, robust and adapt-
ive learning paradigm. Progress has been substantial, and a wide range of algorithms
is now available. An important challenge in the domain of multi-agent learning is
to gain qualitative insights into the resulting system dynamics, as the complexity of
multi-agent interactions renders analytical analysis difficult.

Recently, tools and methods from evolutionary game theory have been successfully
employed to study multi-agent learning dynamics formally in strategic interactions.
This has made it possible to study multi-agent learning dynamics qualitatively, and
in a structured manner. Notably, the evolutionary analysis of learning dynamics has
led to proofs of convergence for existing multi-agent learning algorithms and even to
the design of new algorithms based on desired dynamical properties. This dissertation
contributes to the understanding and analysis of multi-agent learning, focusing in par-
ticular on those settings where multiple autonomous, self-interested decision makers
interact.

In this chapter we set the scope and context that shapes the remainder of this dis-
sertation. Firstly, multi-agent systems are introduced as a framework within which
many large scale real-world systems can be studied. We argue why learning is essen-
tial, and why reinforcement learning is a suitable learning paradigm in this setting.
Then, we relate learning to the biological concept of evolution and sketch the fun-
damental relation between multi-agent learning and evolutionary game theory that
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forms the foundation of the work presented here. We proceed by formulating the
objective of this dissertation, accompanied by a set of research questions that have
guided this work. Finally, we concisely define the scope of this dissertation, and con-
clude with an outline.

1.1 Multi-Agent Systems

Agents are autonomous entities, placed in an environment. The agent perceives this
environment through sensors and acts upon it through actuators, with the intention to
achieve some given goal. In a multi-agent system, several autonomous agents interact
in a single environment. The distributed nature of multi-agent systems makes them
well-suited to model many complex problems of today’s society, such as urban and
air traffic control (Agogino and Tumer, 2012), multi-robot coordination (Ahmadi and
Stone, 2006; Hennes et al., 2012; Claes et al., 2012), distributed sensing (Mihaylov
et al., 2014), financial markets (Lux and Marchesi, 1999), energy distribution (Pipat-
tanasomporn et al., 2009), and load balancing (Schaerf et al., 1995; Verbeeck et al.,
2005).

Multi-agent systems offer several significant advantages over traditional central-
ized systems (Weiss, 1999). They allow for tasks to be distributed over multiple agents,
enabling their parallel execution. This in turn improves the scalability of such systems,
as their modular nature allows to easily add or remove parts as the size of the prob-
lem changes. Moreover, the fact that each agent works independently makes it easy
to build in redundancies which increases the system’s robustness; should one agent
fail, another agent can take over and the system continues to operate properly. These
properties make multi-agent systems the preferable framework within which to model
and study many real world problems.

The fact that multiple agents interact leads to a highly dynamic and potentially
non-deterministic environment. In such a complex environment, defining proper be-
haviour for each agent in advance is non-trivial and often even impossible, and there-
fore, learning becomes crucial. One of the most basic types of learning is learning from
interaction, i.e., by interacting with the environment, observing the effect of your ac-
tions, and optimising your behaviour based on that. In fact, it is this type of learning
that underlies most theories of learning and intelligence (Sutton and Barto, 1998).
Three types of learning are usually distinguished. In supervised learning, an agent
is presented with input-output samples and has to learn a generalized mapping from
input to output based on these examples. Unsupervised learning, on the other hand,
involves finding a hidden structure or pattern in the input without knowing what
the correct output should be. The third form of learning is reinforcement learning, in
which a learner receives a feedback signal that tells it something about the quality of
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its output without specifying explicitly whether the output was ‘correct’. As such, re-
inforcement learning provides a middle ground between supervised and unsupervised
learning: the agent is not left in the dark, but can be guided in the right direction by
providing rewards or penalties without the need for explicit input-output samples. In
many complex domains it is impossible to provide such exact input-output samples,
but it is possible to define a general reward function over states of the environment
which can subsequently be used to form a reinforcement signal for the learning agents.
Closely related to reinforcement learning is the field of optimal control and in particu-
lar the solution to the optimal control problem that is given by dynamic programming
(Bellman, 1957). Here, the aim is to design a controller that modifies the behaviour of
a dynamical system by providing feedback to the system. The main difference is that
dynamic programming requires complete knowledge of the environment, whereas re-
inforcement learning can be model-free (Sutton and Barto, 1998).

In single-agent environments, reinforcement learning has been extensively stud-
ied and acquired a strong theoretical foundation (Kaelbling et al., 1996; Sutton and
Barto, 1998). This led to the construction of convergence proofs for several reinforce-
ment learning algorithms, e.g., Q-learning (Watkins and Dayan, 1992). However, in
multi-agent settings the assumptions on which these proofs are based, in particular
the Markov property, no longer hold, and the dynamic nature of such environments
makes analytical analysis of the learning process an even more daunting task. Des-
pite some specific theoretical proofs of convergence in multi-agent environments (e.g.
Bowling and Veloso, 2002), a thorough understanding of the learning dynamics has
long remained an open problem.

1.2 Learning and Evolution

Learning in multi-agent systems is not only relevant within the field of Al also in game
theory and economics multi-agent learning has been extensively studied (Fudenberg
and Levine, 1998; Shoham et al., 2007). It is not surprising then, that these fields
share a lot of common ground. Indeed, game theory often provides the context in
which decision making in multi-agent systems is modelled and evaluated. Recently,
some research has shifted its focus from traditional game theory to evolutionary game
theory (Tuyls et al., 2006; Tuyls and Parsons, 2007). The concepts employed by evol-
utionary game theory prove to be well suited to describe learning in multi-agent sys-
tems. Both fields are concerned with dynamic environments with a high level of un-
certainty, characterised by the fact that agents lack complete information (Tuyls et al.,
2006). Moreover, there exists a formal relation between the population dynamics of
evolutionary game theory, described by the replicator dynamics, and the behaviour of
reinforcement learning algorithms (Bérgers and Sarin, 1997; Tuyls et al., 2003b, 2006;
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Kaisers and Tuyls, 2010; Klos et al., 2010). In particular, if the probabilistic policy of
a reinforcement learning agent is defined as a population of pure strategies, then the
policy change in the infinitesimal time limit can be described by the population change
under the replicator dynamics.

This evolutionary game theoretic approach offers a promising new paradigm within
which to study multi-agent learning, as it provides new insights towards the under-
standing, analysis, and design of multi-agent reinforcement learning algorithms (Tuyls
et al., 2006; Tuyls and Parsons, 2007). In particular, it sheds light into the black box
of reinforcement learning, by making it possible to analyse the learning dynamics of
multi-agent systems in detail and comparing the behaviour of different algorithms in
a principled manner. This in turn facilitates important tasks such as parameter tuning.
Furthermore, studying the dynamics of different learning algorithms helps in select-
ing a specific learner for a given problem. Not only the analysis of existing algorithms
benefits from this approach. It has also been demonstrated how insights derived from
these evolutionary models can help create new learning algorithms that exhibit certain
preferred dynamical properties (e.g. Tuyls et al., 2003a; Hennes et al., 2010).

Another area where multi-agent systems, learning, and evolution mix is in the
study and analysis of social, economic, and technological networks (e.g. Jackson,
2008; Lazer et al., 2009; Easley and Kleinberg, 2010). For example, agents can be em-
ployed to learn optimal routing strategies in computer networks (Boyan and Littman,
1994) or policies for traffic light switching in road networks (Wiering, 2000; Kuyer
et al., 2008). In the context of social networks, a lot of interest has gone out to
modelling the spread of diseases in the global social network, so as to understand
the disastrous effect of pandemic outbreaks (e.g. Newman, 2002). In addition, social
networks have been used to study the evolution of cooperation, in particular in cases
where cooperative behaviour is costly from an individual standpoint, but beneficial for
society as a whole (e.g. Nowak and May, 1992; Santos and Pacheco, 2005; Nowak,
2006; Van Segbroeck et al., 2010; Hofmann et al., 2011; Rand and Nowak, 2013). Al-
though theoretical models for contagion and diffusion in networks are available, most
of these are based on simplified reactive dynamics for each node, which are appro-
priate for reactive processes such as disease spreading, but less so for the diffusion of
behaviour in a network of autonomous entities. The latter category is often modelled
using imitation dynamics, following the evolutionary process of selection of the fittest
(e.g. Santos and Pacheco, 2005; Ohtsuki and Nowak, 2006a; Ohtsuki et al., 2006).
However, with very few exceptions, not much research has focused on the construc-
tion of appropriate models to study learning in the context of networks, which yield
much richer dynamics than the discrete selection / imitation process.
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1.3 Evolutionary Analysis of Complex Real-World Systems

Most work on the evolutionary modelling of multi-agent learning has focused on rel-
atively simple, stylised interactions that can be cast in the form of normal-form games
(e.g. Tuyls and Nowé, 2005; Tuyls et al., 2006; Kaisers and Tuyls, 2010, 2011; Klos
et al., 2010). However, many complex real-world systems are too complex to be cap-
tured in the framework of game theory directly. Each individual agent may have a
large number of actions or strategies, potentially continuous in nature, and their in-
teraction is rarely one-shot, as in normal-form games. As an example, consider trad-
ing in stock markets. Each trader has a large number of actions — which stocks to
buy or sell, at what price, and when — and the decisions of the individual traders are
rarely synchronised in time. Casting such complex systems as normal-form (or even
stochastic) games is far from straightforward, if not impossible.

A possible solution to this problem is provided by empirical game theory (Walsh
et al., 2002; Wellman, 2006). The main idea is to limit the strategy space of each
agent by introducing high level generic profiles, or meta-strategies, that capture the
main aspects of the interaction. In stock market trading, these profiles can be classes
of trading strategies, for example. Then, the payoff table for this reduced strategy
space can be estimated empirically, either by analysing data from a real system, or
by simulating a model of the system. Finally, standard methods and techniques from
(evolutionary) game theory can be applied to the estimated payoff table.

The effectiveness of such analysis has already been demonstrated in the context
of trading strategies in stock markets (Walsh et al., 2002; Kaisers et al., 2009). Sim-
ilarly, empirical game theory can be used to compare auction mechanisms (Phelps
et al., 2005), strategies in the game of poker (Ponsen et al., 2009), or even collision
avoidance methods in multi-robot systems (Hennes et al., 2013). Moreover, the link
between evolutionary game theory and reinforcement learning allows us to predict
what will happen when agents learn to optimise their strategy in such scenarios.

1.4 Problem Statement and Research Questions

One question that has occupied, and often united, researchers in the fields of multi-
agent learning, economics, (evolutionary) game theory, and biology, is how cooper-
ative behaviour can be sustained in a group in the face of individual selfishness and
rationality. A canonical example of this scenario is given by the prisoner’s dilemma:
a social dilemma in which defection is individually rational, whereas mutual cooper-
ation would be optimal from a social standpoint. In their seminal paper, Axelrod and
Hamilton (1981) first showed how reciprocity can explain the emergence of cooper-
ation in settings where individuals repeatedly interact. Nowak and May (1992) then
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showed how spatial structure may similarly induce cooperation, and Nowak (2006)
later defined five mechanisms by which cooperation can be explained and even pre-
dicted. The dilemma of cooperation forms the topic of the first part of this dissertation.

The second part of this dissertation concerns the evolutionary modelling of multi-
agent learning, in particular the practical applicability of such models to realistic scen-
arios. So far, modelling multi-agent learning using the replicator dynamics of evolu-
tionary game theory has been mainly limited to two-player interactions described by
repeated normal-form games (e.g. Tuyls et al., 2006; Kaisers and Tuyls, 2010; Klos
et al., 2010). Recently, these models have been extended to stochastic games as well
(Vrancx et al., 2008a; Hennes et al., 2009, 2010). However, just as learning in the
context of social networks has of yet only received limited attention, modelling such
learning processes has not been investigated with much rigour.

Based on these considerations, we define the following problem statement, which
provides the context and scope of this dissertation.

Problem Statement: The application of evolutionary game theory to the study and ana-
lysis of multi-agent learning has been mainly limited to repeated normal-form games, and
to a certain extent to stochastic games. In contrast, many real-world multi-agent systems
take the form of networks, in which agents interact locally, or are too complex to be mod-
elled as normal-form or stochastic games. As such, the evolutionary framework needs to
be extended to gain a deeper understanding of learning in those scenarios. Moreover, the
question how cooperative behaviour can be sustained in the face of individual rationality,
remains an open problem that requires attention.

From this problem statement we derive 7 research questions that further guide the
work presented in this dissertation. Questions 1 and 2 deal with the evolutionary
modelling of multi-agent learning in general, and the study of cooperation through
lenience in particular. Questions 3-5 extend the evolutionary framework to networked
interactions, and investigate the evolution of cooperation in social networks. Finally,
questions 6 and 7 involve the application of the evolutionary model to the study and
analysis of trading in stock markets, thereby showing that the framework is suited to
study real-world systems of greater complexity than usually captured by normal-form
or stochastic games.

Question 1: What is the current state-of-the art with respect to the study and analysis
of multi-agent learning using evolutionary game theory?

The last papers that review the state of affairs when it comes to the evolutionary mod-
elling of multi-agent learning, date back almost a decade (Tuyls and Nowé, 2005;
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Tuyls et al., 2006). Since then, progress has been substantial, and an up-to-date sur-
vey is warranted. In particular, evolutionary models have recently been derived for
multi-state stochastic games, and for stateless games with continuous action spaces.
Moreover, in parallel to this line of research, there has been progress in gradient
ascent-based solutions to learning in normal-form games. The apparent link between
gradient ascent and multi-agent learning has not yet been addressed in detail. We
answer this question in Chapter 3.

Question 2: To what extent can lenience be effectively applied in multi-agent learning,
S0 as to promote cooperation?

A special case of the cooperation problem described above is given by the scenario
where the optimal joint action of a game is surrounded by low rewards, making mis-
coordination costly. Often, such scenarios yield an alternative suboptimal outcome,
which provides a safer choice in terms of potential rewards. This problem, termed
relative overgeneneralisation by Wiegand (2003), may drive learners away from the
optimal outcome in the early stages of learning. Lenience was introduced to allevi-
ate this issue in the context of coevolutionary algorithms (Panait et al., 2006), and
subsequently a theoretical model for lenient Q-learning was proposed as well (Panait
et al., 2008). However, lenience has not been tested as a practical reinforcement learn-
ing algorithm when interacting with different types of opponents, or in the context of
learning in networks. We answer this question in Chapter 4.

Question 3: How can the evolutionary model of multi-agent learning be applied to net-
worked interactions?

Many multi-agent systems take the form of networks, in which agents are the nodes,
and the interactions between them form the edges. Agents only interact locally with
their direct neighbours, and, as a result, only learn locally. However, indirectly these
interactions can cause behaviour to spread through the network. The replicator dy-
namics have, so far, only been employed to model learning between agents that are
directly connected. This question addresses this gap, and is answered in Chapter 4
(Section 4.4).

Question 4: How can a mathematical model be constructed to study the evolution of
cooperation on arbitrary complex networks?

Many authors have studied the evolution of cooperation in networks, finding different
relations between structural network properties and the survival of cooperators in the
network (e.g. Santos and Pacheco, 2005; Ohtsuki et al., 2006; Hofmann et al., 2011).
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Moreover, attempts have been made to unite the well-mixed population model of the
replicator dynamics with networked interaction structures. For example, Kearns and
Suri (2006) extend evolutionary game theory to networks and show that evolutionar-
ily stable strategies are preserved assuming a random network and adversarial mutant
set or vice versa. Ohtsuki and Nowak (2006b) show that moving from a well-mixed
population (or complete network) to a regular network keeps the structure of the
replicator dynamics intact, only transforming the payoff function to account for local
competition. However, each of these works deals with only specific types of networks,
and no general dynamical model has been derived yet that can describe the evolution
of cooperation on arbitrary complex networks. This question is answered in the first
part of Chapter 5.

Question 5: To what extent is it possible to efficiently control the evolution of coopera-
tion in social networks by influencing a subset of the networks’ nodes?

In many scenarios where cooperation in the network is desirable, regulatory bodies
outside the network may want to enforce this preferred outcome. For example, in
networks of companies, where the interactions between those companies take place
on the consumer market, cooperation may be linked to the adoption of certain tech-
nologies or production processes, which require initial investment but may benefit the
market as a whole (e.g. Gowrisankaran and Stavins, 2002). Here, a governing agency
may want to incentivise certain key players, in the hope that others follow driven by
market dynamics. Similarly, the adoption of new technologies by consumers can be
modelled as a network, where influence of incentives relate to marketing efforts of
competing producers (Katz and Shapiro, 1986). As such, identifying ways in which
the evolution of cooperation in networks can be controlled is of great relevance. We
answer this question in the second part of Chapter 5.

Question 6: What are the effects of noise and cost on the value of information in stock
markets?

One might conjecture that more information is always better — if you know everything,
you can act perfectly However, previous work has shown that this does not need
to be generally the case. In particular, it has been found both in simulation and in
human experiments that averagely informed traders may be outperformed by unin-
formed traders that follow solely the current market price, and only insiders beat the
market (T6th et al., 2007; Kirchler, 2010). One possible theory explaining this phe-
nomenon is that more information helps during trends, whereas limited knowledge
may be erroneous when the trend reverses; uninformed traders are safe from these
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systematic mistakes (Huber, 2007). However, these results were based on the assump-
tion that information is free and reliable, which is usually not the case in reality. As
such, the effect of noise and cost should be taken into account as well. This question
is answered in Chapter 6.

Question 7: Under which circumstances can chartists survive in a stock market that is
essentially driven by the foresight of fundamentalists?

There are two main types of trading strategies in todays markets: fundamentalists
and chartists (Taylor and Allen, 1992; Gehrig and Menkhoff, 2006). Fundamentalists
use a forecasting model that fits the actual economy and correctly identify the funda-
mental driving forces of the market. Chartists, also called technical analysts, use an
autoregressive process to predict future price developments based on recent trends.
One might be tempted to assume that fundamentalists eventually drive chartists out
of the market. After all, chartists try to exploit an autocorrelation structure in the
price series which in turn is mainly a result of their own trading behaviour — not an
underlying feature of the market. Rational fundamentalists must surely be superior
as they base trading decisions on actual fundamental facts.

However, fundamentalists are not strictly rational. Future fundamental values
(e.g. earnings or dividends) of a company are not known at present time and must be
predicted using a model. The model must match the economy that drives the market
and model parameters must be adjusted accordingly. A mismatch in model choice,
or uncertainty in parameter estimates that deviate from the ones that determine the
underlying process inevitably cause bounded rationality and thus the risk for false de-
cisions. This means that the relation between chartists and fundamentalists might be
more intricate, and there might be scenarios where chartists can survive. This question
is answered in Chapter 6 as well.

1.5 Contributions and Outline

In the following we sketch an outline of this dissertation, thereby highlighting the
main contributions of each chapter.

Chapter 2 provides the theoretical background on which this dissertation is based.
Firstly, we present Markov decision processes as the standard formal framework for
single-agent decision making, together with two well-known fundamental reinforce-
ment learning algorithms: learning automata as an example of policy iterators, and
Q-learning as an example of value iterators. We then proceed to present stochastic
games as a multi-agent extension to Markov decision processes, as well as three ap-
proaches to learning in this extended setting: independent learning, joint action learn-
ing and gradient based methods. Hereafter, we detail how (evolutionary) game theory
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can be used to reason about multi-agent interactions. Finally, we discuss learning and
adaptation in networks.

In Chapter 3 we survey the state-of-the art in the evolutionary modelling of multi-
agent learning. Firstly, reinforcement learning and the replicator dynamics are form-
ally related. We present a categorisation of learning dynamics, based on the nature of
the environment and the actions available to each agent, and provide an overview of
learning dynamics for each category. We then formally link multi-agent reinforcement
learning and gradient ascent, highlighting the basic building blocks that are present
in both groups of algorithms. Results presented in this chapter have been published in
the proceeding of the Autonomous Agents and Multi-Agent Systems conference (AA-
MAS, Kaisers et al., 2012).

In Chapter 4 we discuss lenient learning as a solution to suboptimal convergence
in a specific type of coordination game. Building on previous theoretical findings
we propose the practical learning algorithm lenient frequency-adjusted Q-learning
that implements the theoretical model. We test this algorithm in representative two-
player two-action normal form games, and compare the performance with non-lenient
learners, both in self play and when pitted against each other. We extend this analysis
further to the n-player stag hunt, which we also analyse theoretically in detail. Finally,
we discuss lenient learning in social networks, and propose networked replicator dy-
namics as a model to study learning in such scenarios. Results presented in Chapter 4
have been published in the proceedings of AAMAS (Bloembergen et al., 2011b), the
Benelux Conference on Artificial Intelligence (BNAIC, Bloembergen et al., 2011a),
and the Artificial Life and Intelligent Agents symposium (ALIA, Bloembergen et al.,
2014a).

In Chapter 5 we propose a dynamical model for the evolution of cooperation in ar-
bitrary complex networks, based on a continuous-action iterated prisoner’s dilemma.
We evaluate the model on various small-world and scale free networks, and compare
our findings to a discrete-action version of the game. We then proceed to extend the
model to allow for external influence on any subset of nodes, using methods inspired
by optimal control theory. We prove reachability of an arbitrary network-wide agree-
ment using only a single controlled individual. Based on these results we propose and
evaluate an iterative control algorithm that aims to minimise control input and state
error. This chapter is based on published work in the proceedings of AAMAS (Ranjbar-
Sahraei et al., 2014b) and the European Conference on Artificial Intelligence (ECAI,
Bloembergen et al., 2014c¢).

In Chapter 6 we discuss an agent-based simulation of trading in stock markets, in-
corporating three different trading strategies: zero-information, fundamentalists, and
chartists. We study the value of fundamental information under influence of noise
and cost. Moreover, we investigate under which settings chartists are able to survive
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in a market that is effectively driven by the foresight knowledge of fundamentalists.
Using techniques from empirical game theory, we construct payoff tables that capture
the relative performance of the different trading strategies, allowing to study the evol-
utionary dynamics of a market in which trading agents learn which strategy to use.
Results presented in Chapter 6 have been published in the proceedings of the Genetic
and Evolutionary Computation Conference (GECCO, Hennes et al., 2012) and AAMAS
(Bloembergen et al., 2015b), and in the journal Connection Science (Bloembergen et
al., 2015a).

We conclude in Chapter 7 by reflecting on the contributions of this dissertation,
thereby answering the research questions posed previously. Finally, we discuss the
limitations and open problems related to each of the topics covered, and provide dir-
ections for future research.






Background

This chapter provides the relevant theoretical background that form the foundation
of the work presented in the remainder of this dissertation. The background com-
prises four parts: single- and multi-agent learning, evolutionary game theory, learn-
ing and adaptation in networks, and control theory. In the first part, we concisely
present Markov decision processes (MDPs) as the standard formal framework for
single-agent decision making. We then introduce reinforcement learning as a nat-
ural framework for learning in MDPs, and present two representative reinforcement
learning algorithms, learning automata and Q-learning. Then, we present stochastic
games, also called Markov games, as a multi-agent extension to MDPs, along with
three approaches to learning in this extended setting: independent learning, joint ac-
tion learning and gradient based methods.

In the second part, we introduce game theory as a useful framework in which to
reason about strategic decision making. We present normal-form games as a special
case of stochastic games, along with the Nash equilibrium concept and Pareto optim-
ality, which can be used to discuss the quality of certain outcomes in those games.
Thereafter, we switch from games and strategies to the population dynamics of evol-
utionary game theory. In particular, we discuss the replicator dynamics that form the
basis of the evolutionary framework to study multi-agent learning. Then, we detail
empirical game theory as a means of analysing complex (real-world) strategic inter-
actions.

The third part concerns learning and adaptation in networks. Where (evolution-
ary) game theory assumes unstructured populations of agents in which everyone in-
teracts with everyone, we now move to structured populations in which agents only
interact locally with their direct network neighbours. This gives rise to more complex
dynamics. We discuss several basic adaptation mechanisms in networks that have
been studied in literature. Moreover, we provide an overview of the extensive body of
related work in this area.

In the last part of this background chapter we discuss control theory. We introduce
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a formal model of dynamical systems, and briefly detail stability analysis using Lya-
punov’s direct method. Finally, we discuss the design of optimal controllers, focusing
on linear quadratic control.

2.1 Multi-Agent Learning

Multi-agent learning is a broad research field, concerned with the problem of an
autonomous agent, situated in a stochastic environment, that needs to learn to op-
timise its behaviour in the presence of other (learning) agents. Simultaneously, the
agent needs to cope with the complexities of incomplete information and large ac-
tion spaces, in cooperative or competitive settings (Tuyls and Weiss, 2012). A popular
technique for multi-agent learning is reinforcement learning. A reinforcement learning
agent learns by trial-and-error interaction with the environment, without requiring full
information or a model of the environment (Sutton and Barto, 1998). Single-agent
reinforcement learning is usually described within the framework of Markov decision
processes (MDPs).

In this section, we firstly define MDPs formally. We then describe single-agent rein-
forcement learning, highlighting in particular two representative learning algorithms:
learning automata, and Q-learning. We then introduce stochastic games (or Markov
games) as a multi-agent extension of MDPs, and describe the main approaches to
learning in this extended setting. Finally, we briefly survey common extensions to
reinforcement learning as well as related fields.

2.1.1 Markov Decision Processes

The single-agent reinforcement learning setting can be formalised as a Markov decision
process (MDP) (Puterman, 1994). MDPs are sequential decision making problems,
constrained to fully observable environments. An MDP is defined by finite sets of
states and actions, S and A, one-step state transition dynamics

ga

9 =P[5y, =5 |st =s,a,=a]

describing the probability of transitioning to state s’ € S after taking action a € A in
state s, and the expected value of the next reward
/
R, = E[rtﬂ | S, =8,d, =a,8;41 =S ]
given the previously executed action and resulting state transition. Note that both

state transition and reward can be stochastic - in fact, learning these stochastic mod-
els is a key task in many reinforcement learning problems. Also note that the state
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transition function and the expected value of the reward depend only on the current
state and action. This is called the Markov property: the notion that all information is
retained in the current state. The goal in an MDP is to find a policy 7 that maps states
to action selection probabilities, maximising the expected reward. When following a
fixed policy m we can define the value of a state s under that policy as the total amount
of reward the agent expects to accumulate when starting in state s and following 7

V™(s)=E, [Rt | S¢ = 3] =E; [Z:Zo Ykrt+k+1 S = 5:|

The rewards are discounted by factor y € [0, 1) to ensure a bounded sum in infinite

thereafter:

horizon MDPs. The value function for a policy 7 can be computed iteratively using the
Bellman equation (Bellman, 1957). Starting with an arbitrarily chosen value function
VT, at each iteration and for each state s the value function is then updated based on
the immediate reward and the current estimate of V":

Vi)« D nls,a) ) P[RS + V()] @1

a€A(s) s'eS

The Bellman equation expresses the recursive relation between the value of a state and
its successor states, and averages over all possibilities, weighting each by its probability
of occurring. In this setting, finding an optimal policy ©* is equivalent to finding a
policy that maximises the value function, i.e.,

VT (s)= max V™(s) VseS

When a model of the environment is available, in particular if # and £ are known,
Eq. (2.1) can be applied to compute an optimal policy directly, using a dynamic pro-
gramming technique such as value iteration or policy iteration (Sutton and Barto,
1998). In general, however, such a model may not be available. In this case, rein-
forcement learning can be used to learn an optimal mapping from states to actions
online.

2.1.2 Reinforcement Learning

Reinforcement learning is based on the concept of trial-and-error learning, which un-
derlies many theories of (human) learning and intelligence (Sutton and Barto, 1998).
The reinforcement learning agent continuously interacts with the environment, per-
ceiving its state, taking actions, and observing the effect of those actions (see Fig-
ure 2.1). Actions that yield a positive effect will have a higher chance of being executed
again in the future, that is to say they are reinforced within the agent’s behaviour. To
this effect, the agent receives feedback in the form of a reward signal that indicates
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Figure 2.1: A reinforcement learning agent perceives state s, of the environment at time
t, decides to takes action a,, upon which the environment transitions to state s,,; and
the agent receives reward ;.

the quality of the actions taken. However, the reward may be delayed, or a sequence
of actions may be needed to reach a desired state, upon which a reward is received. As
such, learning to behave optimally is a difficult task, and the agent needs to carefully
balance exploration and exploitation in order to avoid getting stuck in local optima.
The objective of the learning agent is to discover a policy, represented as a mapping
from states to actions, that maximises its long-term expected reward.

Two main classes of reinforcement learning algorithms can be distinguished. The
first branch is based on the policy iteration perspective of MDPs, characterised by the
fact that these methods update their policy directly. A representative example of the
class of policy iterators are learning automata. Value iteration based methods, on the
other hand, estimate a value function over states or actions, and derive a policy from
these estimates. As such, these methods update their policy indirectly. A representat-
ive example of this class is the temporal-difference algorithm Q-learning.

Learning Automata

Learning automata are elementary policy iterators, defined for stateless (static) envir-
onments. In the most basic form, learning automata assume a finite set of actions,
and are typically referred to as finite action-set learning automata. Other, more elab-
orate automata such as parameterized, generalized and continuous action-set learning
automata exist (Thathachar and Sastry, 2002), but these fall outside the scope of this
dissertation.

At each time step, the automaton draws an action a, according to its policy 7.
Based on this action it receives a reward r,,; which it then uses to update its policy.
The update rule of the learning automaton is:

artﬂ(l_ﬂ(a))_ﬁ(l_rt+1)n(a) ifa=a,

(2.2)
—ar 1 m(@)+B(1—ry1)( gy — (@) otherwise

m(a) « n(a) + {
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where a,8 € [0,1] are reward and penalty parameters respectively, and |A| is the
number of actions available to the learner. Various settings for a and f result in
different update schemes. Typical schemes are linear reward-penalty (Lp_p) when
a = f3, linear reward-inaction (Lg_;) when 8 = 0 and linear reward-e-penalty (Lg_.p)
when a >> f. A valid policy 7 is ensured under the assumption that rewards are
normalised, i.e., r €[0,1].

When dealing with multi-state environments, multiple learning automata can be
joined together in a network, where each individual automaton learns an optimal
policy for one specific state (Wheeler Jr. and Narendra, 1986; Vrancx et al., 2008b).
Control is passed from one automaton to the other, as the environment transitions
from one state to the next. The update rule for each automaton is equal to Eq. (2.2),
but the update is delayed and the immediate reward r is replaced by the average
reward 7 received until the same state, and thus the same automaton, is active again.
Assuming the automaton was last active at time [, and is next visited at time T, the
average reward is computed as

T
_ re
_ 2.
7 _Z — (2.3)
t=I+1

It has been shown that a network of learning automata following the Li_; update
scheme converges to an e-optimal policy, assuming the Markov chain corresponding
to each joint policy is ergodic (Wheeler Jr. and Narendra, 1986; Vrancx et al., 2008b),
i.e., when any state in the Markov chain can be reached from any other state in a finite
number of steps.

Q-learning

Arguably the most famous example of a reinforcement learning algorithm is the model-
free temporal difference algorithm Q-learning (Watkins and Dayan, 1992). Q-learning
maintains a value function over state-action pairs, Q(s, a), which it updates based on
the immediate reward and the discounted expected future reward according to Q:

Q(St: at) — Q(Sc: at) +a I:rt+] + Y mfo(Sf+l; a) - Q(St; ac):l (24)

Here, y € [0, 1) is the discount factor for future rewards as before, and a € [0, 1] is the
learning rate that determines how quickly Q is updated based on new reward inform-
ation. Effectively, Q-learning directly approximates the optimal value function Q*, ir-
respective of the policy being followed. As such, Q-learning is an off-policy method, as
opposed to on-policy methods such as SARSA which, instead of using max, Q(s,;1,a)
in Eq. (2.4), estimates the value of the successor state as Q(s,;1,a;41), with a,,; drawn
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using the current policy 7. Q-learning is proven to converge to the optimal policy,
given ‘sufficient’ updates for each state-action pair, and a decreasing learning rate
a — 0 (Watkins and Dayan, 1992).

Choosing which action to take is a crucial aspect of the learning process. Should
the agent exploit actions that yielded high reward in the past, or should it explore in
order to achieve potentially better results in the future, thereby risking a low reward
now? Neither of the two is sufficient on its own, and the dilemma is to find the
right balance (Kaelbling et al., 1996; Sutton and Barto, 1998). Two often used action
selection mechanisms are e-greedy and softmax or Boltzmann exploration (Sutton and
Barto, 1998). e-Greedy selects the best action (greedy w.r.t. Q) with probability 1—e,
and with probability e it selects an action at random. The Boltzmann exploration
mechanism makes use of a temperature parameter 7 that controls the balance between
exploration and exploitation. Action g; is chosen in state s with probability

£ Qs.a)/7

= 2.5
P S 2.5)
j

A high temperature drives the mechanism towards exploration, whereas a low temper-
ature promotes exploitation, favouring actions with higher Q-values. In general, the
temperature may be time dependent, and is often set to decrease over time in order to
promote exploration early on in the learning process while still ensuring convergence
in the long run.

2.1.3 From Single-Agent to Multi-Agent Learning

The MDP framework assumes that a single agent is active in the environment. Once
multiple agents interact and learn simultaneously, the model needs to be extended.
Stochastic games, or Markov games, offer a generalisation of MDPs to the multi-agent
domain (Littman, 1994). In a stochastic game, each agent has its own set of actions,
i.e., for n agents the joint-action space is A = A! x A2 x ... x A". The state transition
and reward functions now depend on the joint action of all agents:

RS XA x ... xA"—R"

P SxA x ... xA"x§—[0,1]

Note that the immediate rewards may be the same for all agents but they need not
be in general. A special case of stochastic games is the stateless setting described by
normal-form games. Normal-form games are one-shot interactions, where all agents
simultaneously select an action and receive a reward based on their joint action, after
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which the game ends. There is no state transition function, and the reward function
can be represented by an n-dimensional payoff matrix, for n agents. An agent’s policy
is simply a probability distribution over its actions. Repeated normal form games are
common benchmarks for multi-agent learning. Such scenarios are detailed further in
Section 2.2.

Learning in a multi-agent setting is inherently more complex than in the single-
agent case described previously, as agents interact both with the environment and po-
tentially with each other. Learning is simultaneous, meaning that changes in the policy
of one agent may affect the rewards and hence the optimal policy of others. Moreover,
agents may have conflicting interests. This makes it more difficult to specify the exact
goal of the learning process, since mere maximisation of individual rewards might not
lead to the best overall solution. The fact that the reward function depends on the ac-
tions of other agents leads to an important characteristic of multi-agent reinforcement
learning: the environment is non-stationary and as a result each agent is essentially
pursuing a moving target (Busoniu et al., 2008). Moreover, the fact that multiple
agents simultaneously influence the environment means that, from the perspective of
individual agents without perfect information, the Markov property no longer holds.
Two different approaches to multi-agent learning can be distinguished: independent
learning and joint-action learning (Claus and Boutilier, 1998).

Independent Learning

Independent learners mutually ignore each other, thereby effectively reducing the multi-
agent learning problem to a single-agent one. Interaction with other agents is impli-
citly perceived as noise in a stochastic environment. The advantage of this approach
is that single-agent learning algorithms can straightforwardly be applied to a multi-
agent setting, and scalability in the number of agents is not an issue. However, partial
observability of the environment means that convergence guarantees from the single-
agent setting are lost. In particular, the Markov property on which such proofs are
typically based, no longer holds. Moreover, no explicit mechanism for coordination is
available to the agents. Despite these drawbacks, independent learners have shown
good performance in many multi-agent settings (Busoniu et al., 2008).

The single-agent reinforcement learning algorithms Q-learning and learning auto-
mata, explained above, can be directly applied in this setting. Moreover, various new
independent learning algorithms have been proposed specifically with the multi-agent
setting in mind. For example, Bowling and Veloso (2001) propose policy hill climbing
with the win or learn fast heuristic (WoLF-PHC), and show that the algorithm is ra-
tional and convergent in multi-agent domains. Other examples include frequency max-

Iperformance may vary depending on the specific domain and algorithm.
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imum Q-learning (Kapetanakis and Kudenko, 2002), an algorithm tailored to coordin-
ate in cooperative multi-agent system, and a class of regret minimisation algorithms
(Blum and Mansour, 2007) that guarantee performance close to the best fixed ac-
tion in hindsight against any opponent. Finally, two extensions to Q-learning have
been proposed that alleviate certain artifacts of this algorithm in non-stationary (e.g.
multi-agent) environments: frequency-adjusted Q-learning (Kaisers and Tuyls, 2010),
and repeated update Q-learning (Abdallah and Kaisers, 2013). Frequency-adjusted Q-
learning has also moreover been proven to converge in normal-form games (Kaisers
and Tuyls, 2011; Kianercy and Galstyan, 2012).

Joint-Action Learning

Whereas independent learners completely ignore the presence of other agents, joint-
action learners explicitly take them into account. Joint-action learners achieve this
by learning in the space of joint actions, rather than in their individual action space
only (Claus and Boutilier, 1998). They observe the actions of other agents in order
to estimate their policy, and then act optimally given those estimated policies. This
way, joint action learners have better means of coordination. The drawback is that the
agent needs to be able to observe the other agents’ actions, and assumptions about the
opponents’ adaptation mechanism are necessary to derive reasonable predictions of
opponents’ future actions. Moreover, taking the full joint-action space into account
means that the complexity of the algorithm grows exponentially with the number of
agents.

Typically, joint-action learners keep count of the frequency with which their op-
ponents play each of their possible actions. Let Ci be the number of times opponent j
has been observed playing action a. Agent i estimates the policy 7/ of opponent j as

. c/
E[r/())]=o——
e Ci

Furthermore, each agent maintains a Q-table, similar to Q-learning, but with the in-
dividual action a replaced by joint-action a € A. Then, agent i computes the expected
value of his own action a as

E[V(a)]= > Q@)] [El7/(a")]

a’eAt J#L

wherea’ = (a',...,a"},a,a'™,...,a"), i.e., any possible joint-action in which agent i

plays the fixed action a' = a. The expected value E[V(a)] can then be used instead of
Q(a) in the agent’s action selection procedure, e.g. Boltzmann or e-greedy. Examples
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of joint action learners are minimax-Q (Littman, 1994), fictitious play and AWESOME
(Brown, 1951; Conitzer and Sandholm, 2007), hyper-Q (Tesauro, 2003), and Nash-Q
(Hu and Wellman, 2003).

Gradient Ascent Optimisation

A somewhat separate stream of multi-agent learning research revolves around gradient
ascent based algorithms. These methods often fall in between independent learning
and joint-action learning but are worth mentioning separately as they are important
for our discussion in Chapter 3. Gradient ascent (or descent) is a well known optim-
isation technique in the field of machine learning. Given a well-defined differentiable
objective function, the learning process can follow the direction of its gradient in or-
der to find a local optimum. This concept can be adapted for multi-agent learning by
having the learning agents’ policies follow the gradient of their individual expected
payoff.

Examples of gradient ascent algorithms are infinitesimal gradient ascent (IGA),
which is designed specifically for two-player two-action normal-form games (Singh
et al., 2000), and generalized infinitesimal gradient ascent (GIGA), which extends IGA
to games with an arbitrary number of actions (Zinkevich, 2003). Both algorithms can
be combined with the win or learn fast (WoLF) heuristic in order to improve conver-
gence in stochastic games (Bowling and Veloso, 2002; Bowling, 2005). Naturally, this
approach assumes knowledge of the (reward) structure of the game, or at least some
mechanism for approximating the gradient of the value function, which is not gener-
ally feasible in practice. However, a more recent algorithm, weighted policy learning
(WPL), relaxes this assumption (Abdallah and Lesser, 2008).

2.1.4 Extensions and Related Work

Several recent developments and extensions to single- and multi-agent reinforcement
learning are worth mentioning for sake of completeness. Although these extensions
fall outside the scope of this dissertation, their sheer number highlights the viability of
reinforcement learning, and underlines the importance of studying learning dynam-
ics in detail. Moreover, these works provide potential starting points for the further
development and extension of the evolutionary framework of multi-agent learning.
The popularity of Q-learning as an effective algorithm for single-agent optimisation
can be deducted from the large number of recent extensions to the original algorithm.
In particular, extensions have been proposed to speed up convergence of Q-learning,
such as eligibility traces (Singh and Sutton, 1996), ensemble methods (Wiering and
Van Hasselt, 2008) and the new variations delayed Q-learning (Strehl et al., 2006) and
speedy Q-learning (Azar et al., 2011). Another recent extension is double Q-learning,
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which shows improved performance in stochastic MDPs where the original Q-learning
algorithm may suffer from overoptimistic action-value estimates (Van Hasselt, 2010).
Worth mentioning here as well is the somewhat separate stream of work on Bayesian
reinforcement learning (Dearden et al., 1998; Strens, 2000). Of particular interest to
the discussion of multi-agent learning is the work of Chalkiadakis and Boutilier (2003),
who use the Bayesian framework to explicitly model an agent’s uncertainty about both
the model of the environment and the strategies of the other agents.

Others have focused on extending Q-learning to environments with continuous
state and/or action spaces. In such settings, the tabular notation for Q functions is
no longer feasible, and function approximators need to be used. Examples of such
methods are fitted Q-iteration (Ernst et al., 2005) and NEAT+Q-learning (Whiteson
and Stone, 2006). Learning automata can similarly be extended to continuous ac-
tion spaces (Santharam et al., 1994; Thathachar and Sastry, 2002; Van Hasselt and
Wiering, 2007). For a recent overview on function approximation methods for rein-
forcement learning, see Busoniu et al. (2010).

Finally, two popular developments in the field of both single and multi-agent learn-
ing involve providing additional guidance to the learning agents, either by modifying
the reward function on-line, or by initialising the Q function based on prior experience.
Reward shaping is a technique to guide the learning agent by designing the reinforce-
ment function in such a way that it rewards the agent for approximating the desired
behaviour (Randlgv and Alstrgm, 1998). Typically, a shaping function is added to the
existing reward function of the reinforcement learning problem, which incorporates
additional domain knowledge. The optimal policies of the original problem are pre-
served when appropriate, e.g. potential based, shaping functions are used (Ng et al.,
1999). Reward shaping has been successfully applied to multi-agent learning as well
(Devlin and Kudenko, 2011; Devlin et al., 2011).

Another way to guide the learning agent is by initialising the Q-function or policy
based on prior experience. For example, to improve learning performance in a com-
plex task, the agent might first learn an optimal policy in a much simpler version of
the task (the source task), and then try to generalise this knowledge by transferring it
from the source task to the target domain. This is the core idea behind transfer learn-
ing (Taylor and Stone, 2009; Pan and Yang, 2010). Transfer learning has been shown
to improve the learning speed in the target domain significantly, even if the source
and target task belong to different domains (e.g. Taylor and Stone, 2007).

2.2 Evolutionary Game Theory

Game theory — in particular evolutionary game theory — and multi-agent learning share
a lot of common ground. Both fields deal with the decision making problem of mul-
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Figure 2.2: General payoff bi-matrix (A, B) for a two-player two-action normal form
game.

tiple autonomous entities who interact in a single environment. In fact, as we have
seen in the previous section, game theory often provides the context in which multi-
agent learning is studied, in the form of normal-form and stochastic games. Even
the terminology maps one-to-one: where we previously talked about agents, policies,
environments and rewards, in the following we use players, strategies, games and
payoffs.

2.2.1 Games and Strategies

Game theory (Von Neumann and Morgenstern, 1944; Gibbons, 1992) is a theory of in-
teractive strategic decision making and as such is of utmost importance for multi-agent
systems. It studies this decision making in the form of cooperative and competitive
games. In such a game each player has a set of actions, and a preference over the joint
action outcome, which is captured by a numerical payoff signal. For games between
two players that are played only once, i.e., one-shot two-player games, the payoffs
can be represented by a bi-matrix (A, B), that gives the payoff for the row player in A,
and the column player in B, as depicted in Figure 2.2. In this example, the row player
chooses one of the two rows, the column player chooses on of the columns, and the
outcome of their joint action determines the payoff to both. The goal for each player
is to come up with a strategy that maximises their expected payoff in the game.

Formally, a strategy is defined as a probability distribution x over the k available
actions, i.e., X = (x,X,...,x;) with 0 < x; < 1 for all i and >, x; = 1. Each player
has a payoff function f(x,y) that determines the payoff function to that player when
playing against an opponent with strategy y.2 If all the weight of the probability
distribution lies on one action (i.e., this action is selected with probability 1), the
strategy is called a pure strategy, otherwise the strategy is mixed.

The players are thought of as individually rational, in the sense that each player is
perfectly logical and tries to maximise his own payoff, assuming the others are doing
likewise. Under this assumption, the Nash equilibrium solution concept can be used to
study what players will reasonably choose to do. A strategy profile (the joint strategy
of all players) forms a Nash equilibrium if no single player can do better by unilaterally

2For notational convenience we discuss two-player games only. However, all concepts and ideas are
straightforwardly generalised to any number of players.
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Figure 2.3: Payoff matrices for the prisoner’s dilemma, the stag hunt, and the matching
pennies game.

switching to a different strategy. In other words, each individual strategy in the Nash
equilibrium is a best response against all other strategies in that equilibrium. Using
the above terminology, a strategy profile (x*,y*) forms a Nash equilibrium iff

Vx,y: fxLYy) = fxy) A F(XLY) = FXY)

If the inequality holds strictly, i.e., with > instead of >, we call the Nash equilibrium
strict. If for any player there is equality, the Nash equilibrium is weak. A game can
have more than one Nash equilibrium, some of which may not be preferred equally.
Moreover, the Nash equilibrium may not be the best outcome from a social point of
view. The concept of Pareto optimality can be used to quantify the desirability of a
certain outcome. A strategy set is Pareto optimal if there exists no other strategy set
under which at least one player is better off while no player is worse off (Gintis, 2009).

We will now look at three representative example games. The first example is
the prisoner’s dilemma (Axelrod and Hamilton, 1981). In this game, two suspects are
arrested by the police. They are interrogated separately, and are offered the same
choice: confess and receive a reduced sentence, or stay silent and risk a long time in
jail. The crux lies in the fact that the police do not have enough evidence to convict
them for the main offense. Hence, if both stay silent, they will be charged with a minor
offense only (e.g., one month in jail), whereas if both confess, they will be convicted
for the main offense and charged with a much larger sentence (e.g., three months jail
time). Should one suspect confess, and the other stay silent, then the confessor walks
free, whereas the other serves five months in jail.

The payoff matrix for this game is depicted in Figure 2.3a. The players can either
cooperate with each other (C) by staying silent, or defect by confessing to the police.
Note that the penalties (jail time) have been inverted to positive payoffs (reduced
sentence). Individually, defection is a best response against any opponent strategy,
and as a result mutual defection is the single Nash equilibrium of the game. However,
both players would be better off if both would cooperate — hence the dilemma. In this
game, the Nash equilibrium is not Pareto optimal, whereas mutual cooperation is.

A second example is given by the stag hunt (Skyrms, 2004), shown in Figure 2.3b.
This game depicts the scenario of two hunters going out on a hunt together. They can
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either hunt for large prey such as a stag (S), or for an easier but smaller target such
as a hare (H). If they team up and both hunt for stag, they will succeed and together
receive a large reward. Hunting for hare is less rewarding, but is easier and does not
require coordination. Hence, hunting for hare provides a safe choice, as the payoff
for this action is independent of the choice of the co-player. Hunting stag is more
risky, as mis-coordination means going home empty handed. This game has two pure
Nash equilibria, (S,S) and (H,H), and one mixed Nash equilibrium where both players
randomise and play S with probability % The Pareto optimum is for both players to
choose S. This simple scenario is highly interesting as it maps perfectly to various other
scenarios of human interaction involving social contract (Skyrms, 2004).

Finally, in the matching pennies game (Figure 2.3c) two players simultaneously
choose which side of their coin to display, either heads (H) or tails (T). If both choose
the same side, the first player gets to keep both coins. If they pick opposite sides,
the second player keeps the coins. In this zero-sum game, the single mixed Nash
equilibrium is for both players to randomise uniformly over their actions.

The three example games represent the three classes of two-player two-action nor-
mal form games that are typically identified (Gintis, 2009). The first class consists of
games with a single pure Nash equilibrium, e.g. the prisoner’s dilemma. The second
class consists of games with two pure and one mixed Nash equilibrium, e.g. the stag
hunt. Finally, the third class consist of games with a single mixed Nash equilibrium,
e.g. matching pennies. As such, these three example games can be treated as repres-
entative for all classes of tow-player two-action normal-form games.

2.2.2 Replicator Dynamics

Classical game theory assumes that full knowledge of the game is available to all play-
ers, which together with the assumption of individual rationality does not necessarily
reflect the dynamic nature of real world interactions. Evolutionary game theory (EGT)
relaxes the rationality assumption and replaces it by biological concepts such as nat-
ural selection and mutation (Maynard Smith and Price, 1973; Weibull, 1997; Hofbauer
and Sigmund, 1998; Gintis, 2009). Central to evolutionary game theory are the replic-
ator dynamics that describe how a population of individuals evolves over time under
evolutionary pressure. Each individual is of a certain genotype, and individuals are
randomly paired in interaction. Their reproductive success is determined by their fit-
ness, which results from these interactions. The replicator dynamics dictate that the
population share of a certain genotype will increase if the individuals of this type have
a higher fitness than the population average; otherwise their population share will de-
crease. The population can be described by the state vector x = (x1, x5, ..., X,)’, with
0 < x; <1Viand )} x; =1, representing the fractions of the population belonging
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Table 2.1: Terminology mapping between the domains of reinforcement learning, game
theory, and evolutionary game theory.

Reinforcement learning Game theory Evolutionary game theory

Environment Game Game
Agent Player Population
Action Action Type
Policy Strategy Distribution of types
Reward Payoff Fitness

to each of n types. Now suppose the fitness of type i is given by the fitness function
fi(x), and the average fitness of the population is given by f(x) = i X; fj(x). Using

X; to denote %, the population change over time can then be written as
%= x [ f;(x) = f(x)] (2.6)

These replicator dynamics describe the change over time of a large population of in-
dividuals. However, the model can be interpreted alternatively as representing the
strategy of a single player, where the population share of each genotype represents the
probability with which the player selects the corresponding pure action. The fitness
function naturally translates to the payoff function for each pure action. The replicator
dynamics now describe the player’s strategy change over time as he repeatedly plays
the game and iteratively updates his policy. This mapping is summarised in Table 2.1.

Evolutionary game theory refines the static Nash equilibrium concept with the no-
tion of evolutionarily stable strategies (ESS). A strategy X is an ESS if it is immune to
invasion by mutant strategies, given the mutants initially occupy only a small fraction
of the population. Let f(x,y) be the (expected) fitness of strategy x against strategy y.
Formally then, strategy x is an ESS iff, for any mutant strategy y, the following hold:

1. f(%x,x) = f(y,x), and

2. if f(x,x) = f(y,%), then f(x,y) > f(y,y).

The first condition states that an ESS is also a NE of the original game. The second
condition states that if the invading strategy does as well against the original strategy
as the original strategy does against itself, then the original strategy must do better
against the invader than the invader does against itself. This means that ESS are
a refinement of the NE solution concept. Moreover, every ESS is an asymptotically
stable fixed point of the replicator dynamics (Weibull, 1997).

In a two-player game each player is represented by his own evolving population,
and at every iteration of the game one individual of each player’s population is drawn
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to interact. Therefore, the fitness of each type now depends on the population distri-
bution of the co-player, i.e., the two populations are co-evolving. If the two players’
populations are given by x and y and their fitness functions by the payoff matrices A
and B as in Figure 2.2, we can write the expected fitness of type i of population x as

fixy) = Zaijyj = (Ay);

J

and similarly we can write the average population fitness as
fxy)= in Zaij.yj = x Ay
i j

Following similar reasoning for the population y, we can rewrite Eq. (2.6) for the two
populations as
x; = x; [ (Ay); —x'Ay]
Yi=Yi [(XTB)i - TBY]

To illustrate the dynamics of Eq. (2.7), we revisit the three example games described

2.7)

previously and presented in Figure 2.3. Since a player’s strategy over two actions
is fully defined by the probability of the first action (as x, = 1 — x;), we can plot
the strategy space of these games as the two-dimensional unit simplex, where the x-
axis represents the probability with which the first player plays his first action, and
the y-axis similarly depicts this probability for the second player. Plugging the payoff
matrix of each game into the replicator dynamics of Eq. (2.7), we find the direction
and relative speed of change for each point in the unit simplex. The resulting vector
fields for the three games are shown in Figure 2.4.

Figure 2.4 shows that the players in the prisoner’s dilemma are drawn to the (D,D)
equilibrium at (0,0), which is both a NE and an ESS. In the stag hunt, both pure NE,
(S,S) and (H,H), are also ESS, but the mixed NE is not. It is a fixed point, but not
asymptotically stable. Moreover, we can see that a larger area of the policy space is
drawn to the safe joint-action (H,H) at (0,0). Finally, the matching pennies game has a
single mixed NE at (%, %), where both players randomise uniformly over their actions.
However, this point is not asymptotically stable and hence not an ESS. Instead, all
trajectories cycle around this fixed point.

2.2.3 Replicator Dynamics with Mutation

The dynamical model of Eq. (2.6) only describes the evolutionary process of selection.
However, in many scenarios mutation also plays a role, where individuals not only
reproduce, but may change their behaviour while doing so. Given a population x as
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Figure 2.4: Directional field of the replicator dynamics, plotted in the unit simplex,
for the prisoner’s dilemma, the stag hunt, and the matching pennies game. The x-axis
(y-axis) shows the probability with which the first (second) player plays his first action.
The size of the arrows indicates the relative speed of change at that point.

defined above, we consider a mutation rate &;; indicating the propensity of species j
to mutate into i (note the order of the indices), such that, Vi:
é”l]ZO and Zgu:l
j

Adding mutation to Eq. (2.6) leads to a dynamical model with separate selection and
mutation terms (Hofbauer and Sigmund, 1998), given by

%= x[fi00 =D xifi00 [+ (6%, — &) (28)
J J

selection mutation

If all species have some positive probability of being ‘mutated into’ by any other spe-
cies, i.e., Vi : &; # 1, then no species can die out under the dynamics of Eq. (2.8). In
game theoretic sense, should we apply the selection-mutation model to a normal-form
game similar to Eq. (2.7), then pure Nash equilibria of the game no longer coincide
with the rest point of Eq. (2.8). Instead, pure Nash equilibria will only be approxim-
ated in the limit as &;; — 0, Vi # j.

2.2.4 Empirical Game Theory

Although various interesting strategic interactions can be appropriately cast as normal-
form games, this in not always the case. Many complex real-world systems are too
complex to be captured in the framework of game theory directly. Each individual
agent may have a large number of actions or strategies, potentially continuous in
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nature, and their interaction is rarely one-shot, as in normal-form games. As an ex-
ample, consider trading in stock markets. Each trader has a large number of actions
— which stocks to buy or sell, at what price, and when — and the decisions of the in-
dividual traders are rarely synchronised in time. Casting such complex systems as
normal-form (or even stochastic) games is far from straightforward, if not impossible.

A possible solution to this problem is provided by empirical game theory (Walsh
et al., 2002; Wellman, 2006). The main idea is to limit the strategy space of each
agent by introducing high level generic profiles, or meta-strategies, that capture the
main aspects of the interaction. In stock market trading, these profiles can be classes of
trading strategies, for example. Then, the payoff table for this reduced strategy space
can be estimated empirically, either by analysing data from a real system, or by simu-
lating a model of the system. Standard methods and techniques from (evolutionary)
game theory can then be applied to the estimated payoff table.

Heuristic Payoff Tables

Payoff functions are typically continuous, and in particular the evolutionary model of
Eq. (2.6) assumes an infinite population. We cannot compute the payoff for such a
population directly, but we can approximate it from evaluations of a finite population.
All possible distributions over k meta-strategies can be enumerated for a finite popu-

lation of n individuals. Let N be a matrix, where each row N; contains one discrete
n+k—1
n

priate simulated model we can estimate the payoffs for each distribution, returning a
vector expected utilities, u(N;). Let U be a matrix which captures the revenues cor-

distribution. The matrix will yield ( ) rows. Using either real data or an appro-

responding to the rows in N, i.e., U; = u(N;). A heuristic payoff table H = (N, U) is
proposed by Walsh et al. (2002) to capture the payoff information for all possible dis-
crete distributions in a finite population. An example of such a heuristic payoff table
is given in Table 2.2. In this example, we have k = 3 different meta-strategies, dis-
tributed over a population of n = 6 individuals. Each row in N specifies exactly how
many individuals use each of the three strategy types, and each row in U specifies
their estimated payoff. If a discrete distribution N; features zero individuals of type j,
their payoff naturally cannot be measured, and we set U;; = 0.

In order to approximate the payoff for an arbitrary mix of strategies in an infinite
population distributed over the species according to x, n individuals are drawn ran-
domly from the infinite distribution. The probability for selecting a specific row N; can
be computed from x and N;:

n N:.
P[N: | x] = x. "
[N: [x] (Nil,Niz,...,Nik)l—[ J

j=1
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Table 2.2: Example of a heuristic payoff table for k = 3 strategies and a finite population
of n = 6 individuals.

Nao N Ng|Usg Uy U
6 0 0 0.5 0 0
5 1 0 04 0.7 0

3 1 2 103 05 038

0 0 6 0 0 09

The expected payoff f;(x) is then computed as the combination of the payoffs in all
rows, weighted by their probability given x:

> PIN; | x]U;;

fix) == “—x)

This expected payoff can be used in Eq. (2.6) to compute the evolutionary population
change according to the replicator dynamics, and to analyse rest points and stability,
as before.

2.3 Learning and Adaptation in Networks

Evolutionary game theory described the interaction of individuals in a well-mixed,
or unstructured, population. This means that each pair of individuals has an equal
chance of interacting. The same holds for multi-agent interactions within the frame-
work of stochastic games, where all agents directly interact with all others through
the environment of the game. In contrast, many real complex systems feature interac-
tions that are structured following some spatial order, e.g. represented as a network.
Individuals interact only locally with their network neighbours, who in turn interact
with their neighbours, causing behaviour to spread through the network.
Understanding the dynamics of such networked interactions is of vital importance
to a wide range of research areas. For example, these dynamics play a central role in
biological systems such as the human brain (Bullmore and Sporns, 2009) or molecular
interaction networks within cells (Barabdsi and Oltvai, 2004); in large technological
systems such as the word wide web (Easley and Kleinberg, 2010); in social networks
such as Facebook (Backstrom et al., 2011; Ghanem et al., 2012; Ugander et al., 2011);
and in economic or financial institutions such as stock markets (Chapman et al., 2012;
Jackson, 2008). Recently, researchers have focused on studying the evolution of cooper-
ation in networks of self-interested individuals, aiming to understand how cooperative
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behaviour can be sustained in the face of individual selfishness (e.g. Nowak and May,
1992; Santos and Pacheco, 2005; Hofmann et al., 2011).

In the following, we formally define networks and describe common adaptation
models that have been studied in this setting. Hereafter, we survey related work,
focusing in particular on research that aims to formally model network dynamics, as
well as research that studies the evolution of cooperation.

2.3.1 Networks

Networks describe collections of entities, represented as the nodes, and the relation
between them, represented as edges. Formally, a network can be represented by a
graph G = (V, W) consisting of a non-empty set of nodes (or vertices) V= {vy,...,v,}
and an n x n adjacency matrix W = [w;;] where non-zero entries w;; indicate the
(possibly weighted) connection from v; to v;. If W is symmetrical, such that w;; = w;
for all i, j, the graph is said to be undirected, meaning that the connection from node
v; to v; is equal to the connection from node v; to v;. In social networks, for example,
one might argue that friendship is usually mutual and hence undirected. This is the
approach followed in this dissertation. In general, however, this need not be the case,
in which case the graph is said to be directed and W asymmetrical. The neighbourhood
of a node v;, nb(v;), is defined as the set of nodes it is directly connected to, i.e.,
nb(v;) = U;v; : w;; > 0. The node’s degree deg(v;) is given by the cardinality of its
neighbourhood, i.e., deg(v;) = |[nb(v;)|. We define the shortest path between nodes v;
and v; as the minimum number of edges that need to be traversed in order to get from
V; to v;, constrained by W. If such a path exists for all pairs (v;, v;), the network is said
to be connected. Several classes of networks can be defined based on their structural
properties, along with the specific mechanism that is used to construct them. Four
common classes are random, regular, small-world, and scale-free networks. We will
briefly introduce these classes below. For a detailed overview of networks and their
properties, the interested reader is referred to Jackson (2008).

Random Networks

Random networks are, as the name suggests, constructed in a randomised fashion.
A common model of random networks is the Erdés-Rényi random graph, defined by
a probability p by which any two nodes are connected (Erd6s and Rényi, 1960). Al-
though very simple to describe, the statistical properties of random networks are in-
teresting to study from various perspectives. For example, what is the minimum value
for p, given a number of nodes n, for which the network will be connected with high
probability? A full discussion of these interesting insights falls outside the scope of
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this dissertation, interested readers are referred to the work of Jackson (2008), who
provides a detailed overview.

Regular Networks

In a regular network, all nodes have identical degree. Typical examples of such net-
works are lattices or grids, whose structure forms a regular tiling in the appropriate
Euclidean space R", n being the degree of the network. Special cases of regular net-
works are the ring, which is a lattice with degree 2, and the fully connected graph of
degree n—1, in which every node is connected to all other nodes. The latter represents
the unstructured or well-mixed population that is typically assumed in evolutionary
game theory. Figure 2.5a shows an example of a regular network.

Small-World Networks

Several types of networks have been proposed that capture the structural properties
that are typically found in large social, technological or biological networks. The small-
world model, for examples, exhibits short average path lengths between nodes and
high clustering, two features often found in real-world networks. Notably, many large
scale real-world networks have been found to exhibit a surprisingly small average
distance. In their famous 1967 small-world experiment (which lends these networks
their name), Travers and Milgram (1969) found that the average distance between US
citizens was around 6, leading to the popular catch-phrase “six-degrees of separation”.
More recently, analysis of the Facebook social graph with at that time 721 million users
indicated an even smaller average distance of around 4 (Backstrom et al., 2011).

Small-world networks can be constructed following the Watts-Strogatz mechanism
(Watts and Strogatz, 1998). Say we wish to create a small-world network with n nodes
and average degree k. We start by constructing a regular lattice of degree k, i.e., if the
nodes are labelled vy,..., vy, there is an edge (v;, vj) if and only if

k k
0 < |i — j| modulo (n——) <=
2 2

Then, for every node v;, take every edge (v;, v;) with i < j and rewire it with probability
. Rewiring is done by replacing edge (v;,v;) by (v, ), with k selected uniformly
random while avoiding self-links, i.e., i # k, and duplicates, i.e., (v;, v;) must not be
present already. The rewiring parameter 8 defines the resulting structural properties
of the network, mixing between a regular lattice (for § = 0) and a random graph (for

B =1). An example of a small-world network is given in Figure 2.5b.
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Figure 2.5: Examples of regular, small-world, and scale-free networks of 20 nodes and
average degree 2.

Scale-Free Networks

Another model inspired by real-world networks is the scale-free network, characterised
by a heavy-tailed degree distribution following a power law. In such networks most
nodes have a relatively low degree, while simultaneously there are still a considerable
number of nodes with a rather high degree, the latter being the hubs or connectors of
the network that make up the heavy tail of the distribution. Scale-free networks can
be constructed using the Barabasi-Albert model (Barabdsi and Albert, 1999). Starting
from an initial connected network of size m, nodes are added to the network one-
at-a-time, until the preferred size n > m, is reached. Each new node is connected
to m < m, existing nodes following preferential attachment. This means that the ex-
isting nodes are chosen with probability proportional to their current degree, i.e., the
probability p; with which the new node will be connected to existing node v; is

_ deg(w)
P S des(r)

with j summing over all current nodes in the network. Preferential attachment mimics
the rich-get-richer phenomenon: nodes with a high degree have a higher chance of
accumulating even more connections. This causes the existence of hubs, and leads
to the scale-free degree distribution that is typically found in real-world social and
technological networks (Barabdsi, 2009). An example is given in Figure 2.5c.

2.3.2 Adaptation Models

When looking at networks we are often interested in the relation between nodes,
the influence nodes have over their neighbours, and the way in which information
passes and ideas spread over a network (Jackson, 2008; Easley and Kleinberg, 2010).
These processes are highly dependent on the type of interactions that happen between
neighbouring nodes. For example, a network can represent buyers and sellers in an
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auction, where bargaining between the various players determines the market price
of the good. In other scenarios the network can consist of friendship ties, where the
strength of these ties determines in how far each individual’s believe or opinion is
influenced by his or her neighbours. In a similar fashion the network can represent
the physical contact between individuals that determines how a disease spreads in a
population.

In order to analyze such processes we need a way to model these interactions
between nodes. A well-known example is the adoption of new technologies. In such
scenarios there are direct-benefit effects at work, where your evaluation of the tech-
nology depends on how many of your friends are already using it. If only a few friends
use the technology the benefit of adopting might not outweigh the cost, but once more
and more friends start adopting it may become profitable for you to join as well. An-
other way to look at this is that people tend to interact with like-minded individuals,
a concept known as homophily. In its simplest form, this notion can be modeled as a
coordination game between neighbouring nodes. For example, the stag hunt, intro-
duced in Section 2.2.1, Figure 2.3b, can be used to model such interactions. Here, S
stands for adoption of the new technology, which is a risky choice for early adopters. In
contrast, sticking to the old way, H, is a safe choice. An important question, related to
the (viral) marketing of a new product, is: given a group of early adopters choosing S,
while all other nodes choose H, will the choice for S cascade through the network when
all nodes repeatedly evaluate their choice under this networked coordination game?
Furthermore, will this cascade be complete, i.e., will all nodes eventually choose S?

Such adaptation processes can be modelled in various ways. Well-known in this
context is the model of imitation and social influence due to DeGroot (1974). This
model is defined for a network G as above, where W is now taken to represent the
weight or trust that node v; places on the current belief of node v;. Given a vector
x = (xy,...,x,) representing the current beliefs of each node vy, ..., v,, the DeGroot
model dictates that beliefs propagate through the network following the update rule

x(t+1) =Wx(t) (2.9)

Note that this is a static consensus model, in which individuals do not adjust their
weightings or trust over time. Nonetheless, the DeGroot model serves as the basis for
many research in the context of social networks (Jackson, 2008).

Other well-known adaptation models in the context of networks are contagion
models, related to the spread of diseases. A standard model of such a process, dating
back to the early 20 century, is known as the SIR model (Kermark and McKendrick,
1927; Jackson, 2008). In this model, nodes can be in one of three states: susceptible,
infectious, and removed (hence the name). Initially, all nodes are either susceptible
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or infectious. Infectious nodes remain in that state for a certain number of time steps,
during which they can infect their susceptible neighbours with some probability p.
After this infectious period, those nodes become immune, and hence are removed
from the network: they cannot become infected again, nor can they transmit the dis-
ease in any form. This model is appropriate for any disease that you only catch once
during your lifetime, after which you either become immune, or die as a result of it.
Recurring diseases can be modeled using the SIS model, where nodes return to the
state of susceptibility after their infectious period has passed (Bailey, 1975). The lat-
ter allows for diseases to keep appearing in a cyclic fashion, much like for instance
the common flu. Both models can be extended to model more advanced dynamics,
including for example non-uniform infection probabilities, random length infectious
periods, or multiple stages of infection (Easley and Kleinberg, 2010).

2.3.3 Related Work

A vast body of work has studied the evolution of behaviour in spatially structured
societies. The aim is usually to establish structural network criteria under which a
‘beneficial’ outcome is reached for the population as a whole. Typically, the prisoner’s
dilemma is taken as the model of interaction, and the question asked is under which
criteria a cooperative outcome can be reached. This question is motivated by the
observation that cooperation often prevails in the social context of human interaction,
whereas results from game theory would suggest otherwise (Nowak, 2012; Rand and
Nowak, 2013).

In the following we survey this work, focusing on two typical approaches. The
first approach studies which structural network properties are favourable for coopera-
tion. The second approach look at incentivising structures, such as additional penalties
or rewards, aimed to promote cooperation. Finally, we briefly mention evolutionary
graph theory, which attempts to bridge evolutionary game theory and network dy-
namics. This survey is by no means complete, as the body of work in this area is
tremendous. A good starting point to delve deeper into this research domain is a
recent overview by Nowak et al. (2010).

The Evolution of Cooperation

Nowak and May (1992) were the first to study the Prisoner’s Dilemma in a popu-
lation of myopic individuals placed on a grid, and interacting only with their eight
neighbours. They found that under an imitate-best-neighbour rule, cooperators and
defectors can survive simultaneously in the network. Later work builds on these initial
findings, by extending the work to more complex network structures and interaction
models. For example, Ohtsuki et al. (2006) look at various network topologies and find
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a link between the cost-benefit ratio of cooperation and the average node degree for
certain imitation-based update rules. This finding is extended upon by Nowak (2006),
who discusses five rules for the evolution of cooperation, which are later supported
by evidence from human experiments (Rand and Nowak, 2013).

One type of network that has been studied in much detail is the scale-free net-
work. Santos and Pacheco (2005) were the first to show that cooperation becomes
the dominant strategy in such networks under imitation dynamics. Moreover, it has
been found that cooperation on scale-free networks is robust against attacks, i.e., the
(intentional) removal of vertices, but declines when the attacked vertices have high
degree (Perc, 2009). In other words, removing the scale-free property leads to decline
in cooperation.

Extensive experiments simulating various update rules and network topologies are
performed by Hofmann et al. (2011) and Roca et al. (2009), who conclude that results
are highly dependent on both properties. As such, defining general rules for arbitrary
networks that dictate when cooperation can prevail is a daunting, if not impossible,
task.

Incentives for Cooperation

Cooperation can also be promoted using some incentivising structure in which de-
fection is punishable (Boyd et al., 2010; Sigmund et al., 2001), or in which players
can choose beforehand to commit to cooperation for some given cost (Han et al.,
2013). Both incentives increase the willingness to cooperate in scenarios where de-
fection would be individually rational otherwise. Allowing individuals to choose with
whom to interact may similarly sustain cooperation, e.g. by giving individuals the
possibility to break ties with ‘bad’ neighbours and replacing them with a random new
connection (Szolnoki and Perc, 2009). Zimmermann and Eguiluz (2005) show how
such a mechanism may promote cooperation, albeit sensitive to perturbations. Santos
et al. (2006) find a critical relation in the time scales of the evolution of strategy and
network structure above which cooperation becomes the dominant strategy.

Another aspect that has been found beneficial for cooperation is social diversity
among the individuals in the network (Perc and Szolnoki, 2008; Santos et al., 2008,
2012). Moreover, Wang et al. (2014) study degree mixing, where one network de-
termines the interaction and hence payoff to each individual whereas a different net-
work determines their strategy update, and find that cooperation might decline in this
setting. Finally, Summers and Shames (2013) study active influence in a non-linear
model of structural balance in social networks, in the context of international rela-
tions. In their model, links between nodes can be both positive and negative, related
to the nodes’ ‘willingness to compromise’ or ‘self-confidence’, and find that a single
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node can effectively influence the network dynamics by locally modifying these links.

Evolutionary Graph Theory

Finally, attempts have been made to bridge the fields of evolutionary game theory
and networks, uniting the well-mixed population model of the replicator dynamics
with networked interaction structures. Kearns and Suri (2006) extend evolutionary
game theory to networks and show that evolutionarily stable strategies are preserved
assuming a random network and adversarial mutant set or vice versa. Ohtsuki and
Nowak (2006b) show that the replicator dynamics are preserved when moving from
a well-mixed population (or complete network) to a regular network, only the payoff
function is transformed to account for local competition. They observe the coexistence
of cooperators and defectors under such settings. Both results are highly constrained
to specific network structures, and as such this cross-section of domains is an important
area for future research.

2.4 Control Theory

In this section we introduce elements of the theory of System Modelling and Control
that form the foundation of the work presented in Chapter 5. First, models used
for representing dynamical systems are introduced. Both stability and control, being
the basis of the analysis performed in this paper, are then detailed. For an in-depth
discussion of this field the interested reader is referred to Levine (1996).

2.4.1 Modelling Dynamical Systems

A model® can be regarded as an accurate mathematical representation of the (nonlin-
ear) dynamics of a system. Essentially, the goal is the discovery of (nonlinear) differ-
ential equations describing the transient behaviour of some state variables in a system.
Typically, state representations are collected in a state vector X = [x;, X5, ..., X, ] and
control variables (i.e., actions applied to affect the state vector) are collected in a

control vector u = [uy,U,,...,u,]| where x; and u; denote the i‘" state and input,

Uy
respectively. A linear and time invariant system (LTI) can thus be represented by

X =Ax+Bu (2.10)

3By model, here and in Chapter 5, we mean a dynamical model in the context of control theory.
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where A is the state space matrix, and B is the control matrix.* Together, these matrices
capture the dynamics of the system.

When the system dynamics are nonlinear and/or time varying, as is the case in
this dissertation, the state space model has to be extended to a more general form

xl fl(t;xb-~-:xn’u1:'-'5up)
Xy folt; X1, 00, Xn,Ug,s e, Up)
X, Fa(ts X, 0, X Uy, ey Up)

where the change in the state variables is a nonlinear mapping of the state variables
and the control actions. Moreover, each state variable is governed by its own set of
dynamics, f;. Compactly, this can be written in matrix form as

x=1(t;x,u) (2.1D

2.4.2 Stability Analysis of Dynamical Systems

Usually, we are interested in the stability and convergence of a dynamical system.
Stability can be studied in the vicinity of equilibria, i.e., rest points of the dynamical
system where X = 0. To quantify ‘vicinity’ we define the neighbourhood of a point x as
an open ball, %B(x, €), centred at x with a radius €. In other words, the neighbourhood
of xis the set {x' € R" : ||x—x'|| < €}, where || -|| represents the £2-norm (or Euclidean
norm) defined as ||x|| = +/X-X. In the context of general nonlinear systems, Lyapunov
stability can then be defined as follows:

Definition 1 (Lyapunov Stability) An equilibrium point X* of a nonlinear system is
said to be Lyapunov stable, if, for every € > O there exists a 6 = 6(€¢) > 0 such that:

x(0) € B(x*,6) = x(t) € B(x",¢€) forall t > 0.

In words, the system is Lyapunov stable at x* if any trajectory that starts close enough
(within a distance of §) to X" stays close enough (within a distance of €) forever. Note
that this has to hold for any arbitrary e that one may want to choose.

Lyapunov stability can be verified using Lyapunov’s direct method, also know as
Lyapunov’s second method for stability. In this method makes use of a Lyapunov func-
tion, similar to a potential function of classical dynamics. The rate of change in this
potential function can be used to verify the system stability. Namely, a Lyapunov func-
tion is defined as V(x) : R" — R such that V(x) > 0 with equality if and only if x =0,

“4Previously, A was used to denote the payoff matrix of a normal-form game. As it is common terminology
in both fields, we choose to keep the name A but alter its meaning in the context of control theory.
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i.e., the function is positive definite. The system is asymptotically stable in the sense
of Lyapunov when %V(x) < 0 with equality if and only if x =0.

2.4.3 Optimal Control Design

One of the main objectives in control theory is the manipulation of the system’s inputs
such that it follows reference over time. In other words, this controller feeds back the
difference between the state variable x and the reference point X, at any instance
in time. Such a rule, where u = [(X, X,.¢), is called a feedback controller. Controller
design is a wide-spread field and a full discussion is beyond the scope of this thesis;
interested readers are referred to Levine (1996) for a thorough introduction to the
field. In this dissertation we limit ourselves to the theory of linear quadratic control.

The aim of a linear quadratic tracker is to control a dynamical system in the form
of Eq. (2.10) such that x follows a reference y defined by:

z=Fz, y=Hz

where z is the internal state vector of the reference system, y is the output, and z(t,) =
z, is the initial state. When the reference is static, which is the case in the remainder
of this chapter, F = 0 and H = I such that z = y. However, we present the general case
here for completeness. To solve the linear quadratic tracking problem, the following
augmented system is defined, which captures the dynamical behaviour of both the
original and the reference dynamics:

x =Ax + Bu

SEHIEEH

and % = [x,z]". To capture the incurred tracking error, the following cost function is
defined:

with

T
J= f [£Q% + u'Ru Jde (2.12)
to

with
S
—H'Q H'QH
being the augmented state cost matrix, and Q and R are being the state and input cost
matrices, respectively. In effect, J sums the state error and control input over time,
starting at t,, until a predefined final time T. Using Q and R you can tune the balance
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between incurred state error and control effort. The goal is then to determine the
optimal input u* that minimises the cost function of Eq. (2.12). The optimal control
input can be computed using

u(t) = —RBP()x(t)
where P(t) is the solution to the Riccati differential equation:

—P(t) = AB(t) + B(t)A—P()BR'BP(¢) + O
P(T)=0

The controller is typically simplified by partitioning P(t) in terms of the original
systems:

f’(t)=|: P(t) Pyy(t) :|

PT12 Py,(t)

leading to:
u'(t) = K, (0)x(t) + Ky()z(t),

K,(t) = —R'B'P(¢)
K,(t) = —R7'B'Py,(1)

with the following partitioned Riccati equations:
P(t) —P(t)A—A'P(t) + P(t)BR'B'P(t) — Q

P1o(t) = Py, (t)F—AP,(t) +P(t)BR'B'P;,(t) + QH
P(T) P»(T) =0

which can be integrated backwards in time to determine P(t) and thereby also u*,
the optimal control signal for our linear quadratic tracker. We will use this technique
in Chapter 5 to design an algorithm that can control complex (social) networks by
influencing a subset of the nodes through a control signal u.
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This chapter is based on the following publications:

Kaisers, M., Bloembergen, D., and Tuyls, K. (2012). A common gradient in multi-agent
reinforcement learning. In Proc. of 11th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS), pages 1393-1394.

Bloembergen, D., Tuyls, K., Hennes, D., and Kaisers, M. Evolutionary dynamics of
multi-agent learning: A survey. Under review.

Recent publications at agents and machine learning conferences as well as papers
published in mainstream related journals make clear that the number of newly pro-
posed multi-agent learning algorithms is constantly growing. An overview of well-
established multi-agent learning algorithms with their various purposes can be at-
tained from multi-agent learning survey papers (e.g. Panait and Luke, 2005; Hoen
et al., 2005; Busoniu et al., 2008; Tuyls and Weiss, 2012), and demonstrates the need
for a comprehensive understanding of their qualitative similarities and differences.
Within multi-agent learning research that studies qualitative learning dynamics
formally, two branches can be identified based on their respective assumptions and
premises. The first branch assumes that the gradient of the payoff function is known
to all players, who then update their policy based on gradient ascent. The second
branch is concerned with learning in unknown environments, using interaction-based
reinforcement learning. In this case, the learning agent updates its policy based on a
sequence of (action, reward) pairs that indicate the quality of the actions taken.
Several papers have been published previously that aim to highlight the link between
evolutionary game theory and multi-agent learning in order to study reinforcement
learning dynamics formally. Notable examples of such work are Tuyls and Nowé
(2005) and Tuyls et al. (2006), who present a first overview of the evolutionary frame-
work, building on the connection between Cross learning and the replicator dynamics,
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and extending this link to learning automata and Q-learning. In related work, Tuyls
and Parsons (2007) sketch the importance of evolutionary game theory to the study
and understanding of multi-agent learning. However, much progress has been made
in the past decade, warranting an up-to-date overview and roadmap of this research
area. Precisely that is the aim of this chapter, which thereby answers Question 1 put
forward in the Introduction.

We start by formally relating reinforcement learning and the replicator dynamics.
Then, we present an overview of recent work that extends this relation to various re-
inforcement learning algorithms, both in stateless and multi-state environments, and
with continuous action spaces. Hereafter, we present a qualitative comparison of rep-
resentative algorithms in the branches of gradient ascent and reinforcement learning,
in two-player two-action normal-form games. Finally, we discuss applications of the
evolutionary framework in relation to parameters tuning, the design of new learning
algorithms, and the analysis of complex strategic interactions.

3.1 Relating Reinforcement Learning and the Replicator
Dynamics

Recent research analysing the dynamics of multi-agent learning builds on seminal
work by Borgers and Sarin (1997), who first proved the formal relation between the
replicator dynamics of evolutionary game theory and reinforcement learning. In this
section, we will first summarise their proof. Next, we present a categorisation of recent
work, based on the nature of the environment and actions available to the agents.

3.1.1 Replicator Dynamics as Continuous Time Limit of Cross Learning

Multi-agent learning and evolutionary game theory share a substantial part of their
foundation, in that they both deal with the decision making processes of boundedly
rational agents, or players, in uncertain environments. The link between these two
fields is not only an intuitive one, but was made formal with the proof that the con-
tinuous time limit of Cross learning converges to the replicator dynamics (Bérgers and
Sarin, 1997).

Cross learning (Cross, 1973) is one of the most basic stateless reinforcement learn-
ing algorithms, which updates policy! 7 based on the reward r received after taking
action j as

r—n(i)r ifi=j

(i) « (i) + { 3.1

—n()r otherwise

IThe dependency of the policy on state s is dropped for stateless environments, and the dependence on
time is implied but omitted for notational convenience.
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A valid policy is ensured by the update rule as long as the rewards are normalised,
i.e., 0 < r < 1. Cross learning is closely related to finite action-set learning auto-
mata (Narendra and Thathachar, 1974; Thathachar and Sastry, 2002). In particular,
it is equivalent to a learning automaton with a linear reward-inaction (Lz_;) update
scheme and learning step size a = 1 (see also Section 2.1.2).

We can estimate the expected change in the policy, E[ An(i)], induced by Eq. (3.1).
Note that the probability 7(i) of action i is affected both if i is selected and if another
action j is selected, and let E;[r] be the expected reward after taking action i. We can
now write

E[An(i)] = ()| Elr]— n(OELr]]+ D> n()] —Elrln()]
J#

= (D) [ELr]— 3 n()E ] (3.2)

Assuming the learner takes infinitesimally small update steps, the continuous time
limit of Eq. (3.2) can be taken as

Ter5(1) = m, (1) + 6 Am, (i)

with lim & — 0. This yields a continuous time system which can be expressed with the
partial differential equation

(i) = n(i) [B[r] - X, m(DE,([r]] (3.3)

Note the similarity between Eq. (3.3) and the replicator dynamics of Eq. (2.6), by
interpreting E;[r] as the fitness of action i, and erc( J)E;[r] as the average fitness of
‘population’ t. More explicitly, in a two-player normal form game we can write the
policy of an agent simply as probability distribution over actions, i.e. T = x. As such
defined, and given payoff matrices A and B and policies x and y for the two players,
respectively, this yields

X; = X; [(AY)i - TAY]

Yi=VYi [(XTB)i - TBY]

which are exactly the multi-population replicator dynamics of Eq. (2.7).

B4

This link can be made explicit not only theoretically but also empirically, as shown
in Figure 3.1. Here, we simulate the learning process of two Cross learners in the
three example games of Figure 2.3. Smooth trajectories are ensured by taking very
small policy update steps — by multiplying the update term of Eq. 3.1 by a@ = 0.001
— effectively mimicking an Lp_; learning automaton. Learning starts at different ini-
tial policies, and the resulting policy traces are overlaid on the replicator dynamics
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(a) Prisoner’s Dilemma (b) Stag Hunt (c) Matching Pennies

Figure 3.1: Policy traces of Cross learning, plotted in the unit simplex and overlaid on
the replicator dynamics, for the prisoner’s dilemma, the stag hunt, and the matching
pennies game.

of Figure 2.4. As can be observed, the learning traces follow the replicator dynamics
precisely. In a similar fashion, dynamical models of different (and more complex) re-
inforcement learning algorithms can be derived. These are discussed in the following
sections.

3.1.2 Categorisation of Learning Dynamics

We divide the learning algorithms and corresponding dynamics that are presented
in this chapter into four categories, based on the nature of the environment and
the actions available to the agent. We distinguish stateless normal-form games, and
games with multiple states with probabilistic transitions between them, represented
by stochastic games (see also Section 2.1.3). Moreover, we differentiate between set-
tings where the agent has a finite, discrete choice of actions, and settings which offer
a continuous range of choices. Table 3.1 lists the four resulting categories, along with
references to related work that has been done in each category. Note that we focus
solely on work that explicitly relates the dynamical models to learning in multi-agent
systems. A large body of work is available that discusses extensions to the replicator
dynamics from an evolutionary game theoretic viewpoint only, however, these fall
outside the scope of this dissertation.?

Cross learning, detailed previously, belongs to the first category of stateless games
with discrete actions. Other examples in this category are stateless Q-learning and
the related frequency adjusted (FAQ) and lenient (LFAQ) versions, regret minimisa-
tion, and gradient ascent algorithms. The second category comprises stateless games
with a continuous action space. Typically, function approximators are used in such

2See e.g. Weibull (1997) and Hofbauer and Sigmund (1998) for an introduction.
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Table 3.1: Categorisation of dynamical models of multi-agent learning that are available

in the literature.

Discrete actions

Continuous actions

Normal form

Q-learning’
FAQ-learning®

Regret Minimisation®

Continuous action

replicator dynamics®

ames . ) -
g Lenient FAQ-learning* Q-learning’
Gradient ascent®
Piecewise replicator
. dynamics®
Stochastic yn
State-coupled
games 9

replicator dynamics
RESQ-learning®

“4Panait et al. (2008)
Bloembergen et al. (2011)

SKaisers et al. (2012)

6Tuyls and Westra (2009)

7Galstyan (2013)

8Vrancx et al. (2008a)
9Hennes et al. (2009)
10Hennes et al. (2010)

ITuyls et al. (2003b)

Kianercy and Galstyan (2012)
2Kaisers and Tuyls (2010, 2011)
3Klos et al. (2010)

settings (see e.g. Busoniu et al., 2010), however most work in that category has so
far been limited to single-agent learning. Here, we summarise approaches to model
such games using continuous action replicator dynamics. The third category is that of
stochastic (i.e. multi-state) games with discrete actions. Dynamics have been derived
for networks of learning automata, in particular piece-wise and state-coupled replic-
ator dynamics, and the variation RESQ-learning that incorporates exploration in the
learning process.

The fourth category in Table 3.1, comprising stochastic games with continuous
action-spaces, is strikingly empty. Indeed, this domain is of main interest for future
work, as no attempts have been made so far to derive learning dynamics for this set-
ting. Combining techniques and approaches from the second and third category could
be a fruitful starting point for such an endeavour. In the next section we provide an
overview of the work listed in Table 3.1, following the same categorisation.

3.2 Overview of Learning Dynamics

With the categorisation presented in Table 3.1 in hand, we now give an overview of
the dynamics of various multi-agent reinforcement learning algorithms. First, learning
dynamics in normal-form games are presented. Next, we discuss replicator dynamics
for continuous strategy spaces. Finally, multi-state learning dynamics are described.
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3.2.1 Learning Dynamics in Normal-Form Games

Repeated normal-form games are characterised by being stateless games, in which
agents choose from a discrete and finite set of actions at each time step. This greatly
simplifies analytical approaches, while at the same time still allowing to capture in-
teresting strategic interactions. As such, normal-form games have been frequently
used as a test-bed for multi-agent learning (Busoniu et al., 2008). Several learning
algorithms have been devised specifically for normal-form games; other multi-state
algorithms such as Q-learning can straightforwardly be applied by removing the state
dependency from the learning update rule. As before, in the remainder we define
x = 1 and y = 0 to be the policies of the two agents in the stateless setting.

Independent Reinforcement Learners

As described in Section 3.1, Cross learning (CL) was the first algorithm to be linked
to the replicator dynamics of evolutionary game theory (Borgers and Sarin, 1997). In
particular, the infinitesimal time limit of the Cross learning update rule (Eq. 3.1) con-
verges to the replicator dynamics. The link between a simple policy learner such as
Cross learning, and a dynamical system in the policy space may seem intuitive. How-
ever, this link has been extended to value-based (and more complex policy-based)
learners as well. A selection-mutation model of Boltzmann Q-learning has been pro-
posed by Tuyls et al. (2003b), assuming a constant temperature 7.5 They show that
the dynamical system can be decomposed into terms for exploitation (selection follow-
ing the replicator dynamics) and exploration (mutation through randomisation based
on the Boltzmann mechanism):*

. ax;
X, =—
T

[(Ay)i —xTAy] —ax; [logxl- — DXk logxk] (3.5)

exploitation exploration

Another way to view the two terms of Eq. (3.5) is in relation to the thermodynamical
concepts of energy and entropy, where selection is analogous to energy, and mutation
to entropy. The entropy term can be further subdivided in the entropy of one individual
strategy, log x;, and the entropy of the entire population, ), x; log x;. In this sense,
mutation is determined by the difference in entropy of an individual strategy compared
to the entropy of the whole population Tuyls et al. (2003b).

The dynamical model of Eq. (3.5) assumes that all actions are updated simul-
taneously, as is the case for Cross learning. Q-learning, however, only updates the

3For a model of Boltzmann Q-learning dynamics with varying temperature, see Kaisers et al. (2009),
and Kaisers (2012).

4From here on, we will derive the dynamics of one agent only. The dynamics of other agents follow
straightforwardly, similar to Eq. (3.4).
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Q-value of the selected action, causing discrepancies between the predicted dynamics
and the actual learning behaviour of the algorithm. The variation frequency-adjusted
Q-learning (FAQ) (Kaisers and Tuyls, 2010) mimics simultaneous action updates by
modulating the update rule (Eq. 2.4) inversely proportional to x;, thereby following
the dynamical model of Eq. (3.5) precisely. Dropping the state dependency, this yields

Q) — Qi) + la[r +YmaXQ(j)—Q(i)]
X; j

However, this function is only valid in the infinitesimal limit of a, as otherwise the
fraction %/x, may become larger than 1. This would violate the assumptions under
which the algorithm converges (Watkins and Dayan, 1992). In order for the method
to be numerically applicable, Kaisers and Tuyls (2010) define a generalised version of
the FAQ algorithm by introducing a variable € [0, 1):

Q(i)<—Q(i)+min(xﬁi,1)-a[r+ymjaxQ(j)—Q(i)] (3.6)

The parameter 3 controls the area of the policy space for which FAQ is valid. If x; > 3,
FAQ behaves according to the evolutionary dynamics; if x; < 8, FAQ behaves equival-
ent to regular Q-learning. Given the range of possible rewards and a specific temper-
ature 7, the most extreme policy that may arise can be computed using the Boltzmann
policy generating function (Eq. 2.5). Hence, T and f can be selected such that x; > 8
is guaranteed, and thus the algorithm always behaves according to the evolutionary
model. Using the replicator dynamics model, two independent proofs of convergence
for FAQ learning have been derived for two-player two-action normal-form games,
showing convergence near Nash equilibria given a decreasing exploration temperat-
ure T (Kaisers and Tuyls, 2011; Kianercy and Galstyan, 2012).

A lenient version of FAQ (LFAQ) has been derived as well (Panait et al., 2008),
aimed at alleviating suboptimal convergence in cooperative settings due to relative
overgeneralisation (Wiegand, 2003). This algorithm will be discussed in detail in
Chapter 4, and is therefore omitted from the discussion here.

Recently, the evolutionary framework has also been extended to the polynomial
weights algorithm, which implements regret minimisation (RM) (Blum and Mansour,
2007; Klos et al., 2010). The learner calculates the loss (or regret) [; of taking action
i rather than the best action in hindsight as

L=r"—r

where r is the actual reward received for taking action i, and r* is the optimal re-
ward. The learner maintains a set of weights w for each action, updates these weights
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according to the perceived loss, and derives a new policy by normalisation:

w; —w;[1—al;]
Wi 3.7)

2w

Despite the great difference in update rule and policy generation compared to Cross

Xiz

learning or Q-learning, Klos et al. (2010) show that the infinitesimal time limit of
regret minimisation can similarly be linked to a dynamical system with replicator dy-
namics in the numerator:

_ ax i[(AY)i - TAY]
1 a[ max; (Ay), — xTAy]

i (3.8)
The denominator can be interpreted as a learning rate modulation dependent on the
best action’s update, corresponding to weighting the action probability update by the
expected loss.

Gradient Ascent Algorithms

Gradient ascent (or descent) is a well known optimisation technique in the field of
machine learning. Given a well-defined differentiable objective function, the learning
process can follow the direction of its gradient in order to find a local optimum. This
concept can be adapted for multi-agent learning by having the learning agents’ policies
follow the gradient of their individual expected payoff. Naturally, this approach as-
sumes that the expected payoff function is known to (or can be accurately learned by)
the agents, which is not generally feasible in practice.

One algorithm implementing gradient ascent for multi-agent learning is infinites-
imal gradient ascent (IGA) (Singh et al., 2000), in which each learner updates its policy
by taking infinitesimal steps in the direction of the gradient of its expected payoff. It
has been proven that, in two-player two-action games, IGA either converges to a Nash
equilibrium, or the asymptotic expected payoff of the two players converges to the
expected payoff of a Nash equilibrium. A discrete time algorithm using a finite de-
creasing step size shares these properties. Take V(x) : R" — R to be the value function
that maps a policy to its expected payoff. The policy update rule for IGA can now be
defined as

aV(x)
==

9 x; 3.9)
X < projection(x + Ax)

Ax; —

where a denotes the learning step size. The intended change Ax may take x outside
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of the valid policy space, in which case it is projected back to the nearest valid policy
by the projection function.

Win or learn fast (IGA-WoLF) (Bowling and Veloso, 2002) is a variation on IGA
that uses a variable learning rate. The intuition behind this scheme is that an agent
should adapt quickly if it is performing worse than expected, whereas it should be
more cautious when it is winning. For this, the algorithm uses two different learning
rates, &, (When winning) and a,,,, (when loosing). The modified learning rule of
IGA-WOLF is

A L V) { Qi if V(X) > V(X

t ox; Qe Otherwise (3.10)

X « projection(x + Ax)

where x* is a reference policy, e.g. a policy belonging to an arbitrary Nash equilibrium,
with respect to which the notions of ‘winning’ and ‘loosing’ are defined.

The weighted policy learner (WPL) (Abdallah and Lesser, 2008) is a second vari-
ation of IGA that also modulates the learning rate, but in contrast to IGA-WoLF it does
not require a reference policy. Moreover, rather than two discrete learning rates, WPL
scales the learning rate continuously, yielding non-linear dynamics. The update rule
of WPL is defined as

A

.0 0
x(_aaV(x){ x; if 52 <0

ox; 1—x; otherwise (3.11)

X < projection(x + Ax)

where the update is weighted either by x; or by 1 — x;, depending on the sign of the
gradient. This means that x is driven away from the boundaries of the policy space.
The projection function is slightly different from IGA, in that the policy is projected to
the closest valid policy that lies at distance € > 0 to the policy space boundary, thereby
ensuring a minimal level of exploration.

In Section 3.3 we will derive the dynamical model of these gradient ascent al-
gorithms in two-player two-action games, and show their remarkable similarities to
the dynamics of the reinforcement learners discussed previously.

3.2.2 Replicator Dynamics in Continuous Action Spaces

The dynamics and algorithms discussed previously assume a discrete, finite action
space. However, in many real-world settings actions are rather of a continuous nature,
e.g. the amount of torque applied to a motor, the distance to travel, or the amount
of money to bid for a product or good. One approach is to discretise such continu-
ous parameters in ranges, and treat each range as one action. Then, any previously
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mentioned algorithm can be used to learn in the discretised action space. However,
it is not straightforward in general to design a good discretisation, and details might
be lost. Another approach is to model those continuous actions directly, moving from
discrete probability vectors over actions to probability density functions.

Suppose each agent’s action space can be described by D continuous parameters
X = (X1, Xy,...,Xp), with x € ©® C RP, where © is the allowed action space. In a
two-player setting, the reward of playing action x against an opponent who plays y
is given by f(x,y). An agent’s policy at time t is now given by a probability density
function over his action space, ¢ (X, t), such that

J o(x,t)dx=1
e

We can now write the continuum limit of the standard replicator dynamics (Eq. 2.6)
as a partial differential equation (Oechssler and Riedel, 2001; Cressman, 2005; Tuyls

and Westra, 2009):
% = ¢(x, [ V(x, )~ E(1)] (3.12)

where

V(x,t)= f f&y)o(y, t)dy
(C]

E(t)= f V(x,t)¢(x,t)dx
e

Here, V(x, t) depicts the expected reward of action x at time ¢, and E(t) depicts the
overall expected reward. In the context of statistical mechanics these can be thought
of as ‘local potential’ and ‘total energy’, respectively.

Similar to the discrete action dynamics discussed before, we can add mutation
terms to Eq. (3.12) to model exploration by the learning agents. Ruijgrok and Ruijgrok
(2005) add a diffusion term to the continuous action replicator dynamics, and find
that even a small mutation rate may greatly alter the outcome of the learning process,
leading to more favourable results in, e.g., the ultimatum game. Building on this work,
Tuyls and Westra (2009) compare three different diffusion-based mutation terms, and
find that the type of mutation can also significantly influence the resulting dynamics.
Finally, Galstyan (2013) investigates mutation based on Boltzmann Q-learning, with
findings similar to those for discrete action Q-learning: mutation drives the learning
process away from pure Nash equilibria, but helps convergence to uniformly mixed
equilibria.
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3.2.3 State-Coupled Replicator Dynamics

Our discussion of learning dynamics has so far been limited to stateless games. Al-
though many real-world interactions can indeed be cast in the form of repeated normal-
form games, this is not always the case. Therefore, there is a need to understand
learning dynamics in statefull environments as well. Recently, state-coupled replicator
dynamics (SC-RD) (Hennes et al., 2009) were introduced as a model for learning in
stochastic (Markov) games with multiple states.

The SC-RD model the interaction of multiple agents, optimising their behaviour
using learning automata, in multi-state Markov games. As learning automata are by
definition stateless (see Section 2.1.2), an extension is needed for multi-state games.
One option is for an agent to maintain a network of learning automata (Wheeler Jr.
and Narendra, 1986; Vrancx et al., 2008b), one for each state. As the game progresses,
control is passed from one automaton to the other depending on the current state of
the game. Instead of performing policy updates for the active automaton based on
the immediate reward r,, the update is delayed until the automaton becomes active
again, at which time it is updated based on the average reward received during that
period (Eq. 2.3).

Let 7 be the set of policies of each of n agents, i.e. w = (nl, ..., n”). Moreover,
let a = (a',a?,...,a") be their joint action. Assuming the game has no absorbing
states (i.e., the set of states S is ergodic), there exists a stationary distribution y ™ over
all states S under 7, where ¥ is the frequency of state s and Decs xT =1. We can
then calculate the limiting average reward 7 of playing a specific joint-action a in state
s, given fixed policies 7r in all other states s’, as

Fi(s,a) =y ri(s,a)+ . FE[r|s'] (3.13)
s’eS—{s}

where E[r! | '] is the expected immediate reward of agent i in state s’. This excepted
reward can be calculated by iterating over all possible joint actions a, and summing
the corresponding reward for player i weighted by the probability of that joint action
occurring under joint policy 7, as

E[r[s]= D] (ri(s,a)!jn"(s,a"))

ac[ [, A

We can set up a system of differential equations for each agent i and action j, similar
to Eq. (3.4), where the payoff matrix A is substituted by the limiting average reward
7. Furthermore, instead of the single opponent policy o we now have all other agents’
policies 7~ = (n... ni"}, n'*1. .. 7). The expected payoff (fitness) for player i play-
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ing pure action j in state s is given by

fls)= Z (Fi(s,a’)l—[nk(s,a’k))

ae[[,A k#i

where a’ = (a1 satth g, a‘...a”), and 7 is the limiting average reward given in

Eq. (3.13). Essentially we enumerate all possible joint actions a with fixed action
j for agent i. In general, for some mixed policy w, agent i receives an expected payoff
of

fi(s,w)zz w(s,a') Z (fi(s,a’)l_[nk(s,a’k))

aleA a’el_[l#iAl k#i

Writing x!(s) = 7!(s) to be the probability distribution over actions of agent j in state
s, we can now define the multi-population state-coupled replicator dynamics as the
following system of differential equations (Hennes et al., 2009):

J'cj.(s) = x;(s) 1y [fi(S,e<)—fi(s,xi(s))] (3.14)

where e; is the j th_unit vector, corresponding to the policy that plays pure action j. In

total this system has N = Y. ¢ > |A'| replicator equations.

3.3 Comparing Learning Dynamics in 2x2 Games

For the special case of two-agent two-action games, the dynamical models presented
for normal-form games in Section 3.2.1 can be simplified. First, the dynamical mod-
els are compared analytically by finding common terms in their replicator equations.
Second, their similarities are confirmed by inspecting the resulting dynamics visually.

3.3.1 A Common Gradient

In stateless two-action games, the policy of a player can be reduced to the probability
of selecting the first action, x = x, since x, =1 —x;. Leth=(1,—-1), x=(x,1—x)
and y = (¥, 1—y). The learning dynamics of the two-player game are now completely
described by the pair (x, y), which denote the probability change of the first action
for both learners. For Cross learning (CL), the dynamics of Eq. (3.4) can be written in
the simplified form

x=x(1—x) [yhAhT-i- ap— a22:|
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where a;, and a,, are elements of the payoff matrix A, as before. To shorten the
notation for two-action games, let

3 =(Ay"); —(Ay), = yhAh'+a;, —a,,

denote the gradient, such that the dynamics of CL are written as x = x(1—x)d. Then,
similarly, the simplified dynamics of frequency-adjusted Q-learning (FAQ) read

x = ax(l—x)[g—log X ]
T 1—x
The dynamics of regret minimisation (RM) are slightly more complex, as the denom-
inator depends on which action gives the highest reward. This fact can be derived
from the gradient: the first action will yield maximal reward iff > 0, the second
action yields maximal reward otherwise. Using this insight, the dynamics of RM in
two action games can be written as follows:

(1+axd)™! ifd<0

x=ax(1—x)3- { (1—a(l—x)8)"! otherwise

For infinitesimal gradient ascent (IGA), the update rule can be worked out in a similar
fashion. The main term in this update rule is the gradient of the expected reward,
which in two player two-action games can be written as

av d
ovix) =—(x,1—x)A Y
dx dx 1—y
=y(ay; —a;y—ag +az) +a;;—ay
= yhAllT+ a12 _a22
=0

This reduces the dynamics of the update rule for IGA in two-player two-action games
to x = ad. The extension of the dynamics of IGA to IGA-WoLF and the weighted
policy learner (WPL) are straightforward, by incorporating the learning rate modula-
tion based on either the value function (IGA-WoLF) or the sign of the gradient (WPL).

Table 3.2 lists the dynamics of the six discussed algorithms: IGA, WoLE WPL, CL,
FAQ and RM. It is immediately clear from this table that all algorithms share the same
basic term in their dynamics: the gradient . Depending on the algorithm, the gradi-
ent is scaled with a learning speed modulation. Interestingly, the dynamics of IGA
are completely independent of the learner’s current policy, i.e., IGA is an off-policy
algorithm, that moreover assumes that all actions are sampled equally often. In this
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Table 3.2: Overview of the learning dynamics of representative gradient ascent and re-
inforcement learning algorithms, rewritten for the specific case of two-agent two-action

games.
Algorithm Dynamical model of x
IGA ad
famin if V(x) > V(x*)
IGA-WoLF 0 {amax otherwise
X ifd<0
WPL ad '{(1 —x) otherwise
CL x(1—x) d
FAQ ax(1—x)[3 -t~ —log ]
_ 1+ axd)™! ifd<0
RM ax(1—x) 8 {(1 —a(1—x)8)"! otherwise

light, it can be argued that Cross learning implements stochastic on-policy gradient
ascent. Finally, FAQ yields the only dynamics that additionally add exploration terms
to the process.

3.3.2 Visual Inspection

As mentioned before, in two-player two-action games the policy space can be com-
pactly represented by the unit simplex as it is completely defined by the probability
with which both agents select their first action. This makes it easy to plot and visu-
ally inspect the learning dynamics in such interactions. In Section 3.1, Figure 3.1, an
example of such analysis can be found for Cross learning, as compared to the stand-
ard replicator dynamics. Similar analysis can be performed for different learning al-
gorithms.

We revisit the comparison of gradient ascent and reinforcement learning based
algorithms that was detailed previously. Figure 3.2 shows the learning dynamics as
predicted by the models derived in Section 3.3.1 and presented in Table 3.2, for the
matching pennies game. Regret minimisation is omitted as its dynamics are visu-
ally indistinguishable from Cross learning (CL). We can clearly observe the similar-
ity between CL and infinitesimal gradient ascent (IGA), which both cycle around the
central equilibrium point without converging. Win-or-learn-fast IGA (WoLF) and the
weighted policy learner (WPL) both converge due to their learning rate modulator; in
the case of WoLE two learning rates are used (for winning and loosing), whereas WPL
uses a range of learning rates, resulting in non-linear dynamics. This difference can be
clearly observed by comparing the vector fields of their dynamical models. Frequency-
adjusted Q-learning (FAQ) spirals inwards towards the Nash equilibrium - although
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Figure 3.2: Overview of the dynamics of representative gradient ascent and reinforce-
ment learning algorithms in the matching pennies game. The bottom right panel shows
a single trace of the dynamical models, using the same initial policy (indicated with &).
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this is hard to observe from the vector field alone, this fact can be verified by follow-
ing a trace of the dynamics, as shown in the bottom right panel of Figure 3.2 for the
different algorithms. These traces highlight the (subtle) similarities and differences
between the diverse algorithms.

3.4 Applications

In the previous sections we have highlighted the descriptive power of the evolution-
ary framework of multi-agent learning. Here, we focus on its prescriptive power as
well. For example, we can use the dynamical models of learning algorithms for easy
tuning of their parameters. Moreover, starting from desired dynamics, it is possible to
reverse-engineer a learning algorithm that exhibits the preferred behaviour. Finally,
the evolutionary models can be used to analyse complex strategic interactions, such
as the game of poker, or multi-robot collision avoidance. Focusing on meta-strategies
rather than primitives reduces the complexity of such interactions enough to analyse
their dynamics analytically.

3.4.1 Parameter Tuning

Parameter tuning is traditionally a cumbersome task involving many simulation trials,
often following some evolutionary optimisation approach. However, with a determ-
inistic dynamical model the effect of various parameters on the learning process is
readily observable. For example, balancing exploration and exploitation is of vital im-
portance to any learning task, in particular in dynamic environments where multiple
learning agents interact. In (FA)Q-learning with Boltzmann exploration (Eq. 2.5),
the temperature parameter T controls the level of exploration — a high temperature
promotes exploration, whereas a low temperature favours exploitation. The dynam-
ical model of FAQ (Eq. 3.5) allows to study the effect of the exploration rate on the
behaviour and convergence of the learner in a multi-agent setting.

Kaisers and Tuyls (2011) perform such analysis in two-player two-action normal-
form games, and show how rest points of the dynamical model move as the temper-
ature changes. In particulay, they find that a high temperature drives the equilibria
towards the center of the policy space, indicating pure randomisation over actions by
the learning agents. As the temperature decreases, the rest points moves towards the
Nash equilibira of the game. In games with multiple Nash equilibria, this may lead
to supercritical pitchfork bifurcations where a single attractor is split in multiple rest
points. A similar analysis for Boltzmann Q-learning has been performed by Kianercy
and Galstyan (2012). They also observe that the fixed points of the dynamical model
move towards Nash equilibria as 7 — 0 and relate the temperature of the Boltzmann
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mechanism to the thermodynamical concept of free energy (Galstyan, 2013). Gomes
and Kowalczyk (2009) propose a dynamical model of e-greedy Q-learning, and show
that this model accurately predicts the empirical findings. Similarly, Wunder et al.
(2010) present a detailed study of e-greedy Q-learning in various classes of normal-
form games and provide proofs of (non-) convergence for each class, varying from
rapid convergence to stable oscillations. Each of these works shows the great applic-
ability and benefit of the replicator dynamics model of multi-agent learning, when
investigating the effect of various parameters on the learning process.

3.4.2 Designing New Learning Algorithms

So far, we have described a forward approach: starting from a learning algorithm we
derived a dynamical model that accurately predicts the behaviour of that algorithm
in the limit. However, it is also possible to take an inverse approach by starting from
a set of desired dynamics and reverse-engineering a learning algorithm that exhibits
those dynamical properties (Tuyls et al., 2003a; Hennes et al., 2010).

As an example, consider again the state-coupled replicator dynamics (SC-RD) in-
troduced in Section 3.2.3. These dynamics describe the behaviour of a network of
learning automata, which are essentially exploiting, and exploration is solely induced
by the stochastic action-selection process. However, results from the domain of state-
less games suggests that exploration aids convergence to mixed equilibria, where
purely exploitative learners enter cycles (see Section 3.3, in particular Figure 3.2).
Hennes et al. (2010) extend the SC-RD model (Eq. 3.14) with the exploration term of
(FA)Q-learning (Eq. 3.5), which leads to the following dynamical model:

J'c;(s) = x;(s) 1 [[fi (s,ej) — ft (5,xi(s)) ] -7 (logx;. + Zx,‘( logx]i)]
k

These dynamics can be translated to a learning algorithm by adding a similar explor-
ation term to the policy update of (a network of) learning automata. The reward
remains equal to the average accumulated reward since the last visit to that particular
automata, while the update after taking action j is now

F—n(i)F — (log n(i) + >, n(k)logn(k)) ifi=j

(i) « n(i) + a{ —n(i)F — 1 (log n(i) + 3, m(k)log (k))  otherwise

Hennes et al. (2010) show that this algorithm, which they call RESQ-learning, is able
to converge in a two-state version of matching pennies, where the standard SC-RD
cycle around the equilibrium. Indeed, the exploration terms helps convergence, as
intended.
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Another example is reported by Tuyls et al. (2003a), who extend the standard
replicator dynamics to ensure stable convergence to Nash equilibria in all classes of
two-agent two-action normal-form games. Based on these extended replicator dy-
namics the authors derive an extended Cross learning algorithm that adheres to the
preferred dynamics.

3.4.3 Analysing Complex Strategic Interactions

In addition to relatively simple, stylised games we also can analyse much more com-
plex systems. This is accomplished by taking a high-level view and focusing on meta-
strategies, rather than atomic actions, in such scenarios (see Section 2.2.4). Moreover,
the link between the replicator dynamics and reinforcement learning allows us to
predict what will happen when agents learn to optimise their strategy in such scen-
arios. For example, this allows to study the evolutionary dynamics of various trading
strategies in stock markets (Walsh et al., 2002; Kaisers et al., 2009). Similarly; it is
possible to compare auction mechanisms (Phelps et al., 2005), strategies in the game
of poker (Ponsen et al., 2009), or even collision avoidance methods in multi-robot
systems (Hennes et al., 2013).

Autonomous collision avoidance is a complex task in the field of robotics, especially
in the presence of dynamic obstacles. The task increases in complexity when the dy-
namic obstacles are mobile robots that also take actions to avoid collisions. Howevetr,
assuming mutual avoidance (reciprocity) may potentially improve avoidance beha-
viour since each robot only takes half of the responsibility of avoiding pairwise col-
lisions. In order to test this hypothesis, Hennes et al. (2013) employ the aforemen-
tioned meta-strategy approach to evaluate the evolutionary strength of different colli-
sion avoidance strategies, by simulating a multi-robot system in which those strategies
are employed, and estimating their payoff functions based on those simulations. They
find that reciprocity is robust in the presence of alternative, non-reciprocal collision
avoidance strategies.

Ponsen et al. (2009) study the game of No Limit Texas Hold’em poker in a similar
fashion. They focus on four meta-strategies, as defined by poker experts: rock, shark,
fish, and gambler. These strategies are defined by the type of play (e.g. tight, loose,
passive, aggressive) employed at different stages of the game. They test the hypo-
thesis, put forward by poker experts, that the shark strategy is strongest, whereas the
fish strategy is generally weak. In order to do so, they analyse data from real poker
games, and estimate the relative payoffs for each of these meta-strategies, depending
on the mix of strategies that is present in each particular game. Using these estimates
payoff functions, they then employ the replicator dynamics to study the evolution-
ary strength of each strategy. Indeed, they find that the shark strategy is abundantly
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present in equilibrium, whereas fish nearly goes extinct.

Both examples show the value of the evolutionary framework for studying complex
strategic interactions. Analysing stable attractors under the replicator dynamics gives
insight into the mix of strategies that may arise when agents learn to optimise their
behaviour in such scenarios. In Chapter 6 we employ this kind of analysis to study
trading strategies in stock markets.

3.5 Discussion

In this chapter we have surveyed recent advances in the study of the evolutionary
dynamics of multi-agent learning. In particular, we presented the formal relation
between reinforcement learning and the replicator dynamics of evolutionary game
theory. By modifying the standard replicator dynamics, the behaviour of various state-
of-the-art reinforcement learning algorithms in a multi-agent setting can be modelled
accurately. So far, this link has been established in stateless environments (e.g. nor-
mal form games), both with discrete and continuous action spaces, and multi-state
environments (e.g. stochastic games) with a discrete action space. As such, an im-
portant avenue for future work is the extension of the theory to stochastic games with
continuous action spaces.

The analytical study of multi-agent learning dynamics offers several important ad-
vantages. In particular, it sheds light into the black box of reinforcement learning, by
making it possible to analyse the learning dynamics of multi-agent systems in detail,
and to compare the behaviour of different algorithms in a principled manner. This
in turn facilitates important tasks such as parameter tuning. Furthermore, studying
the dynamics of different learning algorithms helps in selecting a specific learner for
a given problem. Moreover, is is possible to derive new learning algorithms by first
designing preferred dynamics. Finally, the theory can be applied to complex strategic
interactions by analysing meta-strategies, even in real-world settings as shown for
automated trading and multi-robot collision avoidance.






Lenience as Enabler for Cooperation

This chapter is based on the following publications:

Bloembergen, D., Kaisers, M., and Tuyls, K. (2011). Empirical and theoretical support
for lenient learning. In Proc. of the 10th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS), pages 1105-1106.

Bloembergen, D., De Jong, S., and Tuyls, K. (2011). Lenient learning in a multiplayer stag
hunt. In Proc. of the 23rd Benelux Conf. on Artificial Intelligence (BNAIC), pages 44-50.
Bloembergen, D., Caliskanelli, I., and Tuyls, K. (2014). Learning in networked inter-
actions: A replicator dynamics approach. In Artificial Life and Intelligent Agents Symposium.

Many multi-agent systems can be represented as coordination games, in which agents
need to align their actions in such a ways as to maximise their joint reward. For
example, a team of robots need to explore an unknown environment quickly by co-
ordination who goes where; a set of routers need to jointly optimise traffic flow; and
companies (or consumers) need to align their choice of which new technology to ad-
opt. When multiple independent agents learn simultaneously in such an environment,
it can happen that they converge to suboptimal solutions. Initial mis-coordination on a
globally optimal solution may result in decreased payoffs, and as a result the learner’s
preference for the corresponding action may similarly decrease. In the end, this can
drive the agents away from the global optimum, resulting in a lower payoff for all
involved.

Panait et al. (2008) introduced lenience as a way to overcome the problem of subop-
timal convergence in cooperative multi-agent settings, where initial mis-coordination
leads to a undervaluation of the optimal action. The main idea is to be optimistic in
the beginning, and assume that low rewards are due to other agents’ suboptimal be-
haviour, rather than the action taken by yourself. Moreover, it is assumed that others
are still learning as well, and will improve their behaviour over time. Instead of taking
each reward into account, as is common in most reinforcement learning algorithms,
a lenient learner focuses only on the maximum of several consecutive trials. This way



62 Chapter 4. Lenience as Enabler for Cooperation
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H\ b,c d,d H\ 3,1 3,3
Figure 4.1: General payoff bi-matrix (A, B) of the stag hunt (left) and a typically valued
instance of the game (right).

the agent effectively ignores low rewards that are due to suboptimal behaviour by
others in the early phases of the learning process.

In this chapter we explore the concept of lenience in various multi-agent learning
problems. We first introduce lenience formally, and propose the algorithm lenient
frequency-adjusted Q-learning to overcome the problem of mis-coordination. Next, we
empirically evaluate the proposed algorithm in representative two-player two-action
normal form games. Thereafter, we extend the evaluation to n-player games. Finally,
we investigate the effect of lenience on learning dynamics in social networks.

4.1 Lenient Frequency-Adjusted Q-Learning

Being lenient, according to Merriam-Webster, means “allowing a lot of freedom, and
not punishing bad behaviour in a strong way”.! This is precisely what lenient learning
tries to achieve, albeit in an implicit way. It means not punishing others when they
fail to cooperate now by not cooperating with them in the future, which also entails
not punishing yourself for the uncooperative behaviour of others.

In the following, we first define the exact problem that lenient learning aims to
solve. We then formally introduce lenience, and discuss its theoretical advantage. Fi-

nally, we propose a practical learning algorithm that implements the theoretical model.

4.1.1 The Problem of Mis-Coordination

The problem of mis-coordination is particularly relevant in games with multiple Nash
equilibria, of which one Pareto-dominates the others. However, it may be difficult
to coordinate on this equilibrium due to the structure of the reward function. For
example, consider again the stag hunt described in Section 2.2.1. The general payoff
matrix of the stag hunt is shown in Figure 4.1 (left), where a > b > d > c, along with
a valued instance (right). The joint actions (S,S) and (H,H) are both Nash equilibria,
but only (S,S) is Pareto optimal. Hence, both players would be best off when they
jointly choose (S,S). The question is, how can the players learn to coordinate? The
dilemma here lies in the fact that mis-coordination is costly. If one player chooses S,

IMerriam-Webster online: http://www.merriam-webster.com/dictionary/lenient
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while the opponent chooses H, the S-player is much worse off by receiving ¢ < a.
Moreover, the players are in general not aware of the other player’s actions, nor of
the payoff structure of the game. This means that the S-player in this scenario cannot
distinguish the joint actions (S,S) and (S,H) — both are mapped to the player’s expected
value for taking action S. This problem is especially pertinent in the early phase of the
learning process, when both players essentially play a randomized strategy. As such,
players may come to believe that action H is better than S, as it provides a more stable
payoff (see Figure 4.1, right). In particular, when a + ¢ < b +d, as is the case here,
action H yields a higher expected reward than S against a purely randomised strategy.

Fulda and Ventura (2007) call this action shadowing, when one action appears bet-
ter than another, while in fact the other action is potentially superior. Related is the
term relative overgeneralisation, coined by Wiegand (2003) in the context of coevolu-
tionary systems, which describes the tendency to be attracted towards strategies that
perform well in general. In our scenario, action H yields a decent reward irrespective
of the action of the other player, thus performing well in general. Panait et al. (2008)
call such strategies “jacks of all trades but masters of none”. In game theoretic terms,
the risk dominant equilibrium (H,H) is more robust, whereas the payoff dominant
equilibrium (S,S) yields a higher profit (Harsanyi and Selten, 1988).

4.1.2 Theoretical Advantage of Lenience

Lenience was introduced precisely to solve the relative overgeneralisation problem
described above, by allowing agents to ignore low rewards and instead focus only on
high rewards for each action (Panait et al., 2006, 2008). This optimistically biases
the action’s perceived utility, based on the assumption that low rewards are caused
by a mismatch with the other agent’s actions rather than being inherent to the action
itself. Moreover, the lenient agent assumes that the co-player is still learning, and will
improve his policy over time, thereby reducing this mismatch.

Lenience can be implemented by collecting k rewards for each action, and updat-
ing the policy based on the highest of those rewards only. This causes an optimistic
change in the expected reward for the actions of the learning agent, incorporating the
probability of a potential reward for that action being the highest of x consecutive
trials. In the context of replicator dynamics in normal-form games, this means that
expected reward for each action, Ay, in the evolutionary model of Eq. 2.7 is replaced
by the utility vector u, which incorporates lenience, as

)'(l. = X; [ui —XTu:| (41)
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with K K
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Zk:aik=aij Yk

0=y, (4.2)
j
where D>, . means summing over all indices k for which the statement holds
(Panait et al., 2008). In words, Eq. (4.2) computes the expected maximum reward
for action i over k consecutive trials, expressed as a weighted sum over all possible
rewards a;; given the other agent’s actions j. The weight of each term q;; is equal to
the probability that a;; is the maximum reward observed over  trials. This probability
is given by the probability of getting x rewards that are no higher than q;

ZJ’k

k:ay<q;;

j» which is

minus the probability of getting x rewards that are strictly lower, which is

Z.Vk

k:ag<a;;

Finally, more than one action of the other agent might result in a reward equal to q;
requiring the additional weight term

j

Yj
Zk:aik=aij yk
which incorporates the probability that the observed reward a;; comes in fact from the

other agent’s action j and not from any other action that would have yielded equal
reward (Panait et al., 2008).

Going back to the example of the stag hunt (Figure 4.1, left), we now demonstrate
the effect of lenience on the expected reward E[r | y] for both actions. We assume the
other player chooses actions purely random, i.e., y = (1/2 1/2)". Without lenience, we
compute

E[rg | y]=(Ay); =2.5
E[ry | y]=(Ay), =3.0

where rg (ry) is the reward for action S (H). When using lenience with k = 2, we get

E[rg |yl =u; =3.25
Elry |yl=u,=3.0
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showing that the lenient learner now optimistically identifies S as the best action.
Increasing xk makes the effect even more pronounced, e.g. k¥ = 5 yields rg ~ 3.91,
whereas ry remains unchanged. Panait et al. (2006) argue that lenience thus allows
the agents to better approximate the solution quality of the joint policy space, thereby
enabling independent learners to reach the globally optimal Nash equilibrium. Similar
findings are reported by Panait et al. (2008) using dynamical models of both coevolu-
tionary algorithms and Q-learning. They model a lenient version of Q-learning by
plugging the lenient utility estimate of Eq. (4.2) into the dynamics model of (FA)Q-
learning (Eq. 3.5):

ax;

Xx; = T[ui _XTU]_aXi[logxi — X logxk] (4.3)

In the following, we discuss the practical implementation of a learning algorithms
based on this lenient dynamical model.

4.1.3 Practical Implementation

In order to derive a practical learning algorithm that follows the dynamical model of
Eq. (4.3), we start from the variation frequency-adjusted Q-learning, which has been
shown to follow the dynamical model of Q-learning precisely (see the discussion in
Section 3.2.1). We keep the Q-value update rule of Eq. (4.4) intact, but change the
immediate reward r for the lenient version r, as

Q) — Q) +min(§i, 1)} +ymaxa() -] 4.4

where r’i( is the maximum reward received for action i over the past x times that
this actions was executed. We call this algorithm lenient frequency-adjusted Q-learning
(LFAQ). Note that leniency can straightforwardly be applied to any reinforcement
learning algorithm, as only the immediate reward needs to be modified. However, we
focus our discussion on LFAQ only, as this algorithm incorporates the advantage of ex-
ploration based on the Boltzmann mechanism (Eq. 2.5), as well as the robustness (with
respect to initialisation) and preferable dynamics resulting from frequency-adjustment
(Kaisers and Tuyls, 2010).

In the following, we study the dynamics of LFAQ in a number of settings. Starting
from two-player two-action games, we then proceed to n-player games, and finally we
discuss lenient learning in the context of (social) networks. Each scenario highlights
the advantage of lenience with respect to convergence to the global optimum.
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4.2 Dynamics in 2x2 Matrix Games

As a first step in analysing the advantage of lenience in achieving cooperation, we
compare the dynamics of lenient and non-lenient FAQ-learning in representative two-
player two-action normal-form games (see Section 2.2.1). We choose these simple
games as their properties are well understood, and they have served as a testbed for
various multi-agent learning algorithms, allowing for easy comparison (e.g. Abdallah
and Lesser, 2008; Abdallah and Kaisers, 2013; Kaisers and Tuyls, 2010; Tuyls and
Nowé, 2005; Tuyls et al., 2006; Klos et al., 2010).

In two-player two-action games the policy space can be compactly represented
by the unit simplex, as it is completely defined by the probability with which both
agents select their first action. This makes it easy to plot and visually inspect the
learning dynamics in such interactions. In Section 3.1, Figure 3.1, an example of such
analysis is given for Cross learning, as compared to the standard replicator dynamics.
Similar analysis was performed in Section 3.3, and will now be employed to study the
dynamics of LFAQ. First, we compare the dynamics of FAQ and LFAQ in three classes
of games. Thereafter we demonstrate the advantage of lenience by analysing how
the basin of attraction for the global optimum changes with the degree of lenience.
Finally, we look at the quantitative performance of both algorithms.

4.2.1 Learning Dynamics

We analyse the behaviour of the learning algorithms by running simulations starting
from various initial policies, and plotting the resulting learning trajectories together
with the directional field of their corresponding evolutionary model. For each starting
point, 10 simulations are run and the resulting trajectories are averaged. Moreover,
the learning rate is set to a = 0.001, ensuring smooth trajectories. For both algorithms
we set  =0.01, T = 0.01, and y = 0.2 Finally, we set the degree of lenience x = 5.
Figures 4.2a and 4.2b show the learning dynamics of FAQ as compared to its lenient
counterpart LFAQ. The first observation is that the proposed LFAQ algorithm follows
the dynamical model of lenient Q-learning precisely, and as such inherits the intended
behaviour. Comparing FAQ and LFAQ, we note that the dynamics of the two algorithms
are similar in their behaviour when only one equilibrium is present, as is the case in
the prisoner’s dilemma and matching pennies. In contrast, in the stag hunt differences
can be observed. As expected, lenience drives the learning process towards the Pareto
optimal equilibrium (S,S) (top right corner of the simplex), yielding a larger basin of
attraction for the global optimum for LFAQ than for FAQ. Finally, where Cross learning
and the standard replicator dynamics do not converge in the matching pennies game,

2As the games are stateless, adding the (discounted) value of the ‘successor’ state is not relevant.
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Figure 4.2: Policy traces of FAQ and LFAQ, plotted in the unit simplex and overlaid
on their respective dynamical model, for the prisoner’s dilemma (left), the stag hunt
(center), and the matching pennies game (right).
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LFAQ inherits the benefits of the Boltzmann mechanism which makes it spiral inwards
towards the single Nash equilibrium at (1/2,1/2). Even though this equilibrium is not
evolutionarily stable in the classical replicator dynamics model (Section 2.2.2), it is a
stable attractor under the (L)FAQ dynamics. The additional exploration term makes
a difference here.

Until now, we have analysed the dynamics of two identical learners pitted against
each other. However, the replicator model allows heterogeneous systems as well, in
which different agents follow different learning rules. In such cases, the policy change
of each individual agent is modelled by a different variation of the replicator dynamics,
corresponding to that agent’s learning rule. Figure 4.2c shows this for the situation
where FAQ and LFAQ are pitted against each other. In the prisoner’s dilemma and
matching pennies game, where the self-play dynamics of both learners are similar,
the mixed dynamics do not change significantly. Slight differences can be observed,
caused merely by a slight difference in update step size for both algorithms. In the
stag hunt, however, the learning process is clearly influenced as the different dynamics
mix. Interestingly, we observe that the stronger tendency of LFAQ to play the optimal
action S causes FAQ to do likewise. LFAQ is stubborn, and persistently plays S despite
an initial mismatch with the action of FAQ.

4.2.2 Convergence Properties

The main parameter of LFAQ is the degree of lenience, k. One of the big advantages
of having a dynamical model is that it allows studying and tuning such a parameter
without the need for extensive simulations. Instead, we can directly analyse the dy-
namical model. We study the effect of k on the convergence properties of LFAQ by
investigating the basins of attraction for the two stable equilibria of the stag hunt. The
basins are calculated by following traces of the dynamical model of LFAQ (Eq. 4.3),
starting from uniformly spaces points in the policy space on a 100 x 100 grid. For
each trace we record the equilibrium to which the dynamics converge, and plot the
border between the basins as a solid line in the unit simplex. The directional field of
the dynamical model is also shown to provide a clear overview of the convergence
properties.

Figure 4.3 shows these dynamics for k = {1,2,5,25}. Note that in the case where
k = 1 the dynamics of LFAQ collapse to the original dynamics of FAQ, thus providing
a base line for comparison. We observe that the basin of attraction for the global
optimum at (S,S), located at (1, 1), grows with the degree of leniency, and in the limit
consumes the whole strategy space. These results illustrate the claim of Panait et al.
(2008) that “properly-set lenient learners are guaranteed to converge to the Pareto-
optimal Nash equilibria in coordination games”. This demonstrates the value of the
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Figure 4.3: The effect of the degree of lenience x on the convergence of LFAQ in the
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for the two stable equilibria; the Pareto optimum is located at (1, 1).
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Figure 4.4: Payoff bi-matrix for the battle of the sexes.

newly proposed Lenient Frequency Adjusted Q-learning algorithm, which inherits the
theoretical guarantees from the evolutionary model.

In a similar fashion, we can investigate the basin of attraction for the mixed dy-
namics of FAQ and LFAQ pitted against each other. To further highlight the potential
benefits of lenience, we look at a second coordination game: the battle of the sexes,
also known as Bach or Stravinsky. In this game, two persons (traditionally husband
and wife) need to decide which concert to attend. One prefers Bach, the other prefers
Stravinsky; however, both prefer spending time together, rather than going separate
ways. These preferences are captured in the payoff matrix presented in Figure 4.4.
This game has two pure Nash equilibria, (B,B) and (S,S), however neither equilibrium
Pareto dominates the other. Moreover, there exists a mixed Nash equilibrium where
each attends their preferred concert with probability 2/3, however this equilibrium is
not evolutionarily stable under the replicator dynamics.

Figure 4.5 shows the basins of attraction together with the evolutionary dynamics
of FAQ, LFAQ and the mixed FAQ-LFAQ scenario, for the stag hunt and battle of the
sexes. Several interesting properties of mixed play learning can be observed. In the
stag hunt, the two learners have almost opposite basins of attraction in self play, with
FAQ converging to (H,H) and LFAQ to (S,S) in the larger part of the policy space.
When these two learners interact, the resulting basins of attraction appear to be a mix
between those two opposites, as observed before in Section 4.2.1. In the battle of
the sexes, FAQ and LFAQ show similar convergence properties in self play, but LFAQ
profits in the mixed scenario: a larger part of the policy space converges to (S,S),
which corresponds to the preferred equilibrium of LFAQ (being the column player).
These results are summarised in Table 4.1.
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Figure 4.5: Overview of the basins of attraction of FAQ, LFAQ, and a combination of both
learners, in the stag hunt and battle of the sexes. The arrows indicate the directional
field of the (mixed) evolutionary model, and the solid line represents the border between
the basins of attraction for the two stable equilibria.

Table 4.1: Percentage of the policy space belonging to the basin of attraction of the
two equilibria, for different combinations of learners, in the stag hunt and battle of the
sexes. Pareto optimal equilibria are indicated with x.

Stag Hunt Battle of the Sexes
(HH) (S5,9)" | (B,B)" (S,9)"
FAQ - FAQ 743 257 | 495 49.5
FAQ - LFAQ 37.3 62.7 31.7 68.3
LFAQ -LFAQ | 19.0  80.9 49.5 49.5
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Figure 4.6: Average reward over time for FAQ (solid), LFAQ (dotted), FAQ mixed
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4.2.3 Performance

We compare the performance of FAQ and LFAQ quantitatively by analysing the aver-
age reward during game play acquired by both algorithms. The average reward is
computed over 2,000 simulations, starting from uniformly random initial policies. In
half of the simulations the learner acts as the row player; in the other half as column
player, so as to rule out any differences caused by player type rather than learning
rule. Figure 4.6 shows the average reward over time for FAQ and LFAQ, both in self
play and when playing against each other. In the stag hunt, LFAQ performs better than
FAQ in self play, as expected based on the earlier analysis. In mixed play LFAQ does
worse initially, which can be explained by the fact that FAQ chooses action H more
often, leading to a lower payoff for LFAQ when optimistically playing S. In the long
run, however, LFAQ catches up, as both players settle on either one of the equilibria.
In the battle of the sexes, LFAQ clearly gains from mixed play, whereas FAQ looses.
This is as expected based on the preceding analysis of the basins of attraction in this
scenario.

Finally, we show that it is also possible to compute the expected reward of the
learners based on their evolutionary model, using the basins of attraction calculated
in Table 4.1 and the games’ payoff matrices. Specifically, we multiply the players’
payoff in each pure Nash equilibrium by the fraction of the policy space of the cor-
responding basin of attraction, and add those up. The results are given in Table 4.2.
These evolutionary expectations are in line with the simulation-based findings presen-
ted in Figure 4.6, which shows that the replicator dynamics can not only be used to
describe the behaviour and convergence properties of learning algorithms, but can
also accurately predict their performance.
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Table 4.2: Expected reward for FAQ and LFAQ, both in self play and when playing
against each other, based on the games’ basins of attraction and payoff matrices.

Stag Hunt Battle of the Sexes

Player 1 Player 2 | Player 1 Player 2
FAQ - FAQ 0.75 0.75 0.74 0.74
FAQ - LFAQ 0.88 0.88 0.66 0.84
LFAQ - LFAQ 0.94 0.94 0.74 0.74

4.3 N-Player Stag Hunt

A straightforward generalization to an n-player stag hunt (NSH) was proposed by
Pacheco et al. (2009). They discuss the game in terms of cooperation and defection,
where cooperation maps to action S in the two-players stag hunt, and defection maps
to H — we follow this terminology in the remainder of this chapter. In essence, the
NSH is a public goods game with threshold, in which a certain minimal investment
is required to produce a public good. This investment is paid by those players who
cooperate, however the public good is shared by all. As such, the dilemma here is
the temptation for cooperators to defect and free-ride on the investment of others.
However, if too many players defect, the threshold of investment is not reached and
no public good is created, which is detrimental for all players.

The NSH is defined formally as follows. Suppose there are n players involved in
the game. Cooperating incurs a cost ¢ (the investment), whereas defecting is free of
charge. There is a threshold m < n that defines the minimum number of cooperators
needed to produce the public good. Above this threshold, the value of the public good
depends linearly on the number of cooperators, n.. This value is defined as n. - F - c,
where F is a multiplication factor. As a result, the reward for a defector is given by

ncFc
rD =

-0(n,—m)

where 6(x) is the Heaviside step function, i.e., 8(x < 0) =0 and 0(x = 0) = 1. The
payoff for cooperators is given by

re=rp—c

which subtracts the investment cost from the benefit of the public good. For m = 0, the
game is an n-player prisoners’ dilemma (NPD), or traditional public goods game. The
NSH translates to the two-player stag hunt described in Figure 4.1, withn =m = 2,
as
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C D
C ( (F—1),(F—1)c —c,0 )
D 0,—c 0,0

which yields the typically valued instance in Figure 4.1 (right) for ¢ = 2 and F = 3/2
and a positive shift in payoff values of +3.

4.3.1 Analysis of the Game

Analyses of normal-form games are often limited to two players, since adding a third
player requires a three-dimensional payoff table. Bukowski and Miekisz (2004) elab-
orately analyse and classify three-player normal-form games. Our analysis is aimed to
be more intuitive, as we only focus on a specific type of game. An example of a payoff
table for the 3-player stag hunt, flattened to two dimensions, is provided in Table 4.3
(left). Given the definition of a Nash equilibrium (i.e., no player can gain from uni-
laterally changing his strategy) and the fact that we look at a symmetric game (the
players share a common payoff table), we may represent the 3-player stag hunt in a
more compact payoff table, as shown in Table 4.3 (right). Here, we represent each
joint action only by the number of cooperators n. present, as this number fully defines
the payoff to both strategies. Players’ strategy changes then correspond to diagonal
movements in this compact payoff table (\ or \\), as they switch from cooperation to
defection or vice versa. The example shows an NSH with n =3, m =2, and ¢ = 1. For
instance, n, = 3 is a Nash equilibrium if no player has the incentive to defect (move
\); for this to happen F —1 > 2f/3 must hold. Note that potential mixed equilibria
are not visualized in either the full or the compact table.

The NSH has two critical settings for the parameter F at which the dynamics of
the game change (Pacheco et al., 2009). The first critical value indicates above which

Table 4.3: The full payoff table of a three-player stag hunt game (left) can be repres-
ented more compactly (right), due to the symmetric nature of the Nash equilibria. The
shades of grey encode the mapping from one to the other. For compactness, the full
payoff table shows the payoffs for cooperators and defectors as (r¢, rp), irrespective of
the joint strategy played, as these are independent of the ordering of players.

Cs D;
C Cz 2F/3— 1, 2‘F/3
1 Dy | 26/5—1,%/3 -1,0
54
Cs D,
Cy | #—1,%/3 -1,0
Dy D, 1,0 -,0
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Table 4.4: Overview of the different Nash equilibria resulting from the parameter F,
for an n-player stag hunt with n = 3, m = 2, and ¢ = 1. The representative examples
shown are F € {4, 3,2,3/2,1}.

F>3 F=3 3h< F<3 F =3/ F <3/
(4) (2) 1)
I'c ’p I'c p T'c ’p
0 -
—1/3 2/3
—1 0 -1 0
- 0

W Strict pure NE m Weak pure NE

value of F all players will cooperate. The second critical value indicates below which
value of F all players will defect. Between those critical values, we expect exactly m
players to cooperate in equilibrium. We demonstrate this for the 3-player example
game by computing the payoffs for different values of F, using the compact payoff
table of Table 4.3. Table 4.4 shows the results for F € {4,3,2,3/2,1}. In this game,
the two critical values of F are obtained when F —1 = 2F /3 and when 2 /3—1 = 0 (see
Table 4.3, right), yielding F = 3 and F = 3/2. Regardless of F, the fully defective joint
strategy n. = 0 is always a strict Nash equilibrium. For F > 3, there is no incentive to
deviate from n, = 3 (a single deviating cooperator would obtain 8/3 < 3), therefore
ne = 3 is a strict Nash equilibrium in this case. For 3/2 < F < 3, we find a strict
equilibrium for two cooperators and one defector (n; = 2). A deviating cooperator
obtains 0 < !/3, whereas a deviating defector obtains 1 < 4/3. For F < 3/2, only the fully
defective equilibrium remains. Interestingly, when F = 3, two weak Nash equilibria
are present, where either n. = 3 or no = 2. Players have no direct incentive of
deviating, but are indifferent with respect to those equilibria. For F =3/2, n, =2 is a
weak Nash equilibrium.

More generally, for n players and threshold m, there are two interesting regions in
the compact payoff table around n. = n and n, = m, as visualized in Table 4.5. As
can be seen in the leftmost table, players switch to defection from the fully cooperative
equilibrium if

nF (n—1F
——C < i —
n

== F<cn
However, if this is the case, then this also means that

(n=2)F _(n—DF __
n n
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Table 4.5: Interesting regions in the generalised compact payoff table of the n-player
stag hunt.

ng >m ng<m
nc 'c ) nc 'c ™
n nF/n—C -
n—1| ®=-DF/p—¢ m mF [ —c mF [
n—2| =2F/—c (n=2F [ m—1 —c
0 - 0

and therefore n, = n—1 is not an equilibrium either, et cetera. Thus, n, = n is the only
possible equilibrium in the leftmost table, i.e., for F > cn. In the rightmost table, we
see that the situation changes at n, = m, which may be an equilibrium. This minimal
cooperative equilibrium disappears if

mF cn

——c<0 = F<—

n m

As a result, the two critical parameter settings are F = cn and F = </m. For F > cn,
we expect full cooperation. For cn > F > */m, we expect m cooperators and n —m
defectors. For F < </m, we expect full defection. Note that these two settings are
identical if m = 1. This means that in this case we have full cooperation when F > cn,
total indifference when F = cn, and full defection otherwise. Finally, there are two
special cases: m = 0 and m = n. When m = 0, the only critical setting is F = cn, and
for m=n we have F =c.

4.3.2 Dynamics and Basins of Attraction for Three Players

In this section we accompany the preceding theoretical analysis with empirical evalu-
ations in the 3-player stag hunt. We compare lenient and non-lenient FAQ-learning, as
well as Cross learning (CL). The latter algorithm is chosen because it follows the stand-
ard replicator dynamics exactly (see Section 3.1.1), and as such provides a baseline
for comparison. The algorithms are compared using various parameter settings for
the 3-player stag hunt game defined previously; our main interest is in comparing the
basins of attraction for the different pure strategy Nash equilibria. We conclude with
an analysis of the critical parameter settings of the game, when the strict Nash equi-
librium is replaced by a weak Nash equilibrium, leading to non-convergence in certain
cases.
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Basin of Attraction

As before, we define the basin of attraction for a certain equilibrium as the region of
the policy space for which learning will eventually converge to that equilibrium. In
order to calculate these basins, we follow traces of the evolutionary dynamics of the
learning algorithm at hand. Starting from 1,000,000 uniformly-spaced points in the
three-dimensional policy space (for three players), we evaluate to which equilibrium
the dynamics converge. This way, we are able to calculate the percentage of the policy
space that constitutes the basin of attraction for each equilibrium.

Cross learning (CL) only implements selection, whereas FAQ and LFAQ also include
a mutation term. The influence of this term depends on the temperature 7, where a
high temperature emphasises mutation, and a low temperature favours selection. As
mutation drives the learning process away from any pure policy, in these experiments
we set the temperature to a relatively low value of T = 0.01 in order to allow con-
vergence to pure Nash equilibria. Furthermore, for CL we set the learning step size
a = 1072, and for FAQ and LFAQ we set « = 107>, f = 0.01 and x € {3,5}. The
step size a is deliberately kept low to ensure that the dynamics of the actual learning
algorithms closely resemble those of the evolutionary model.

Results for the NSH with n = 3, ¢ = 1, and varying values for m and F are visualized
in Figure 4.7. For m = 1, the game is fully defective for F < n and fully cooperative for
F > n (see Section 4.3.1). Therefore, this setting is not further analysed and omitted
from the table, and instead we focus our discussion on the more interesting case of
m = 2 and m = 3. For m = 2 (top), the two critical values are F =3/2 and F = 3, as
is clearly visible in the chart. For F < 3/2, the game is fully defective. For 3/2 < F < 3
we observe the two expected Nash equilibria, where n. = m and n. = 0. CL and FAQ
show similar behaviour — mutation does not seem to affect the results in this case. In
contrast, the addition of lenience increases the basin of attraction for the equilibrium
ne = m, yielding a more favourable outcome.

For F = 3, we clearly observe a turning point. Defection is still a strict Nash
equilibrium, but in this case the weak equilibrium at n, = 3 has a larger basin of
attraction when using CL. FAQ and LFAQ do not fully converge, due to the mutation
term that drives these algorithms away from the boundaries of the policy space. The
attraction of this equilibrium is not strong enough to overcome this effect. This special
case is analysed in more detail below. For F > 3, the fully cooperative equilibrium
(ne = 3) becomes the main attractor. Again, LFAQ has a larger basin for the fully
cooperative equilibrium than the non-lenient learners.

For m = 3 (Figure 4.7, bottom), the critical value is F = ¢ = 1 (see Section 4.3.1).
For F < 1 the game yields only a single fully defective equilibrium. For F > 1 the
game has two pure Nash equilibria at n, = 0 and n, = 3. We observe that the basin of
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Figure 4.7: Basins of attraction for each of the pure Nash equilibria, in percentage of
the policy space, for an n-player stag hunt with n = 3, ¢ = 1, and varying m and F.
We compare Cross learning (CL), FAQ, and LFAQ with k € {3,5} (indicated as LF-3 and
LE-5).

attraction for the cooperative equilibrium grows as F increases. CL and FAQ perform
similarly again, i.e., mutation does not play a big role as long as the temperature is
kept low. In contrast, LFAQ has a larger basin for the fully cooperative equilibrium,
increasing with the degree of lenience, for each value of F > 1.

(Non-)Convergence to Weak Nash Equilibria

Previously we discussed the NSH for n = 3, ¢ = 1, and various settings for m and F.
The scenario where m = 2 and F = 3 proved interesting, as it is a transition point
between two different classes of the game. This scenario yields three pure Nash equi-
libria, no = 0, n; = m and n; = n. The latter two are weak Nash equilibria, as no
player has an incentive to switch, but at the same time no player has an incentive to
stay — both equilibria result in the same payoff for all players (see Table 4.4). We ob-
served before that this may lead to non-convergence, in particular for FAQ and LFAQ.
In order to analyse this scenario in more detail, we study the evolutionary dynamics as
well as policy traces of the three learning algorithms in the three-dimensional policy
space, shown in Figure 4.8.

The policy traces are calculated by simulating the iterated NSH, starting at 27 uni-
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Figure 4.8: Evolutionary dynamics (top) and policy traces (bottom) of Cross learning
(CL), FAQ, and LFAQ (x = 5) for a 3-player stag hunt with ¢ =1, m = 2 and F = 3. This
game has two pure Nash equilibria, indicated with O (n; = 0, strict NE) and O (n, = 3,
weak NE).

formly distributed points in the policy space (the settings for the learning algorithms
remain the same as above). The simulations are run for 200,000 iterations to ensure
approximate convergence (if it occurs), and results are averaged over 10 experiments
to produce smooth learning traces. The size of the arrows in the directional field plot
of the corresponding dynamics indicate the magnitude of directional change.

Figure 4.8 clearly illustrates the differences in behaviour of the learning algorithms.
We observe a notable distinction between the selection-based Cross learning algorithm,
and the selection-mutation algorithms FAQ and LFAQ. Whereas CL still converges to
the weak Nash equilibrium at n, = 3 for some initial policies, FAQ and most notably
LFAQ are driven away from the equilibrium, even with a small exploration rate 7.
Looking at the dynamical models of FAQ and LFAQ, we observe that the magnitude
of directional change diminishes close to the corner where n, = 3 and similarly, the
policy traces of these learning algorithms come to a halt without converging. Regard-
less of exploration, the simplex boundaries between n, = 2 and n, = 3 bring any
policy trace to a halt, as the individual agents cannot distinguish these joint strategies
based on payoff in this scenario, as discussed above in Section 4.3.1. In fact, any
joint-action in which two players cooperate is a Nash equilibrium, independent of the
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(possibly mixed) strategy of the third player.

In conclusion, we observe a similar beneficial effect of lenience when it comes
to convergence to the Pareto optimal Nash equilibrium of the 3-player stag hunt, as
compared to the 2-player case discussed in Section 4.2. However, the 3-player scenario
is more complex, yielding different equilibria depending on the settings of the game.
As such, the 3-player game, as well as the general n-player stag hunt, provides an
interesting game in which to study learning and cooperation.

4.4 Lenient Learning in Social Networks

Many multi-agent interactions are spatially structured in the form of networks. For
example, agents can be nodes in computer networks, or mobile robots that interact
only within a limited range. Moreover, agent-based models of real-world systems may
exhibit a networked interaction structure, e.g. when modelling the spread of beha-
viours, ideas or diseases in society, or the interaction of companies in the consumer
market.

In the following we study learning in (social) networks. Learning agents are placed
on the nodes of a network, and interact with their direct neighbours following the
stag hunt model. We propose networked replicator dynamics to model and analyse the
evolution of behaviour on such networks, and evaluate the model in various scenarios,
studying the similarities and differences between several learning algorithms. In par-
ticular, we study the effect of lenience in such networked interactions. Moreover, we
study how structural network properties influence the resulting network dynamics.

4.4.1 Networked Replicator Dynamics

Agents are placed on the nodes of a network, and interact only locally with their direct
neighbours. Assume a graph G with n nodes as defined in Section 2.3, with n agents
placed on the nodes {v;,...,v,}. If we define each agent by its current policy x we can
write the current network state y = (x!,...,x"). Our aim is to study how y evolves
over time, given the specific network structure and learning model of the agents. For
this purpose, we introduce networked replicator dynamics (NRD), where each agent
(or node) is modelled by a population of pure strategies, interacting with each if his
neighbours following the multi-population replicator dynamics of Eq. (2.7).

The update mechanism of the proposed networked replicator dynamics is given in
Algorithm 1. At every time step, each agent (line 3) interacts with each of his neigh-
bours (line 4) by playing a symmetric normal-form game defined by payoff-matrix
A. These interactions are modelled by the replicator dynamics (line 5), where each
neighbour incurs a potential population change, %, in the agent. Those changes are
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Algorithm 1 Update procedure for the NRD model

: x «currentState
:x <0
: forj=1to N do
for all x* € N(v;) do
x) x4+ x] [ (AxF); — x/TAXK ]
end for
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X TN
end for
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normalised by the degree, |N(v;)|, of the agent’s node (line 7). Finally, all agents
update their state (line 9).

The model is flexible in that it is independent of the network structure, it can be
used to simulate any symmetric normal form game, and different replicator models
can easily be plugged in (line 5 of Algorithm 1). This means that we can use any of
the dynamical models presented in Section 3.2.1 as update rule, thereby simulating
different multi-agent learning algorithms.

In the following, we present experimental results of the NRD model in various scen-
arios. In particular, we use Barabasi-Albert scale-free (Barabasi and Albert, 1999) and
Watts-Strogatz small-world (Watts and Strogatz, 1998) networks (see Section 2.3).
The first set of experiments compares the different learning models, focusing in par-
ticular on the role of exploration and lenience in the learning process. We then analyse
lenience in more detail, investigating the influence of the degree of lenience on the
speed of convergence. Hereafter, we look at the relation between network size and
degree with respect to the equilibrium outcome. The last set of experiments investig-
ates the role of stubborn nodes, which do not update their strategy, on the resulting
network dynamics. All experiments use the stag hunt (Figure 4.1, right) as the model
of interaction.

4.4.2 Comparing Different Learning Models

We compare several of the dynamical models of multi-agent learning presented in Sec-
tion 3.2.1. In particular, we compare Cross learning (CL, Eq. 3.4), Cross learning with
mutation (CL+, Eq. 2.8), frequency adjusted Q-learning (FAQ, Eq. 3.5), and lenient
FAQ with degree of lenience k (LFAQ-k, Eq. 4.3). In order to ensure smooth dynamics
we multiply the update x of each model by a step size a. CL and CL+ use a = 0.5,
FAQ uses a = 0.1, and LFAQ uses a = 0.2. Moreover, the exploration (mutation) rates

are set as follows: CL+ uses &;; =0.01 for alli # j, and §; =1 —Z#i &;;; and FAQ
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Figure 4.9: Dynamics of a networked stag hunt game in small-world and scale-free
networks. The figure shows the mean network state in equilibrium (gray scale) for
different algorithms (x-axis) and average network degree (y-axis). LFAQ is abbreviated
as LE

and LFAQ use 7 = 0.1. We simulate the model on 100 randomly generated networks
of n =50 nodes (both scale-free and small-world, the latter with rewiring probability
B = 0.5), starting from 50 random initial states y, and report the average network

F=2 >

i

state

after convergence. Since the stag hunt has only two actions, the full state can be
defined by x;, the probability of the first action (cooperate).

Figure 4.9 shows the results of this comparison. The gray scale indicates the final
network state jy after convergence, where black means defection, and white means
cooperation. Note the non-linear scale, this is chosen to highlight the details in the
low and high ranges of y. Several observations can be made based on these results.
First of all, there is a clear distinction between non-lenient algorithms, which converge
mostly to defection, and LFAQ, which converges toward cooperation. As anticipated,
lenience indeed promotes cooperation also in networked interactions. Also in line
with findings reported above is the lack of distinction between pure selection (CL)
and selection-mutation (CL+, FAQ) models. Adding mutation (or exploration) in this
setting has virtually no effect on the resulting convergence. Increasing the mutation
rate does lead to a change, however, this is to the extent that the added randomness
automatically drives the equilibrium away from a state of pure defection.

The most interesting results of Figure 4.9 are those of LFAQ-2. Here, we can
observe a range of outcomes, depending on the average network degree. A more
strongly connected network yields a higher probability of cooperation in equilibrium.
Moreover, LFAQ-2 is the only algorithm that yields an ‘indecisive’ final state that is
significantly far from either pure cooperation or defection. In order to investigate this
situation further, we look in detail at the dynamics of a single network. Figure 4.10a
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Figure 4.10: Example of the convergence of LFAQ-2 on a scale-free (top) and small-
world (bottom) network with average degree 2 and 4, respectively. The network is split
between cooperators (white) and defectors (black) in the final equilibrium state.

shows the network state y over time for one specific initial state of a scale-free net-
work with average degree 2. The dynamics indicate that the network is split into
clusters of cooperators and defectors, and no unanimous outcome is reached. The
final state is highlighted in Figure 4.10b, depicting the network structure and state of
each node, clearly showing these two clusters. Depending on initial conditions, dif-
ferent splits can be observed. Similar results are observed in small-world networks.
Figures 4.10(c)-(d) show the dynamics in an example network with average degree
4. Again, a cluster of defectors is maintained in equilibrium amongst a majority of
cooperators. Identifying specific structural network properties that lead to clustering
is a main question for future work.
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Table 4.6: Time to convergence (mean and std. dev.) of LFAQ, for small-world and
scale-free networks of various degree d.

Algorithm Small-World Scale-Free
d=2 d=4 d=6 d=8 d=2 d=4 | d=6 | d=8
LFAQ-2 148 (71) | 72 (50) | 47 (21) | 43 (12) || 81 (53) | 50 (28) | 41 (7) | 40 (6)

LFAQ-3 72 (58) 36 (3) 35 (1) 35 (1) 44 (21) | 36(2) |35(@) |35
LFAQ-4 43 (24) 34 (1) 34 (D 34 (D 38(13) | 34(1) [34() | 34D
LFAQ-6 35(12) 33 (D) 33 (D) 33 (D) 35(8) 33(1) [33() |33(D

4.4.3 The Effect of Lenience on Convergence

In this set of experiments, we take a closer look at the influence of leniency on the
dynamics and convergence of the network. Using the same set of networks as in the
previous section, we zoom in only on the lenient algorithms and compare their con-
vergence speed for the different networks. Table 4.6 lists the number of time steps to
convergence, again averaged over 100 networks with 50 random initial states, with
the standard deviation in parentheses. Two trends are clearly visible: increasing the
degree of lenience decreases the convergence time (most notably for degree 2 net-
works), and increasing the network degree similarly decreases the convergence time
(most notably for LFAQ-2). These results can be explained intuitively, as lenience
pushes the learning process faster in the direction of cooperation, and a higher net-
work degree yields more interactions per time step and hence similarly faster conver-
gence. The fact that no convergence below 33 time steps is observed, independent of
the network type, can be explained by the limits that the step size a and the inherent
dynamics of the model pose. Specifically, the update speed of the replicator dynam-
ics (Eg. 2.6), which is already limited by the magnitude of fitness difference between
strategies, is further reduced by step size a, posing a lower bound on the convergence
speed.

4.4.4 The Relation Between Network Size and Degree

Here, we investigate the role that both network size and average degree play in de-
termining the equilibrium outcome of the learning process. Specifically, we compare
networks of different sizes with a fixed degree, to networks which have a degree pro-
portional to their size. For the fixed degree we set d = 2 for all network sizes; for
the proportional degree we set d = 0.1n. For each combination we simulate 100 ran-
domly generated networks, each using 10 randomly drawn initial states, following the
LFAQ-2 dynamics. Figure 4.11 shows the results for both small-world and scale-free
networks. The figure shows that the equilibrium state is independent of the network
size if the degree is kept fixed, whereas the probability of cooperation increases when
the degree grows with the network. This result shows that a more strongly connected
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Figure 4.11: The influence of network size and degree on the equilibrium state for
small-world and scale-free networks using LFAQ-2. Fixed degree is 2, proportional de-
gree is 10% of the network size.

network tends to cooperate more than one with sparse interactions. Intuitively, this
can be explained by the inherent dynamics of the stag hunt: a critical mass of cooper-
ators is required for cooperation to be a beneficial strategy. Specifically, as long as
you have a high chance of encountering a defector in your neighbourhood, defection
is the safer choice in order to avoid the cost of mis-coordination. In more densely
connected networks, the critical mass is reached more easily, as it is spread out over
more interactions. The size of the network does not play a role in the final network
state.

4.4.5 The Influence of Stubborn Agents

Finally, we look at the influence of stubborn agents on the final state. Stubborn agents
are ones that do not update their state, regardless of the actions of their neighbours
or the rewards they receive. These agents could be perceived as regulating bodies in
financial networks, or politicians in social networks trying to spread their views.
Here, we select the highest degree nodes in the network to be stubborn — determ-
ining an optimal set of stubborn agents in order to achieve a desired outcome is an
important question for future work. Figure 4.12 shows the results of an extensive set
of experiments, simulating networks of different sizes n € {20, 40, 60, 80,100} with
average degree 2, and varying the percentage of stubborn agents. The stubborn agents
keep their state fixed at x; = 0.95. Interestingly, we find that the results are inde-
pendent of the network size when the degree is fixed, and hence the results presented

3Note that we exclude these fixed nodes from the results presented here, however a similar trend can be
observed if they are included.
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Figure 4.12: The influence of the number of stubborn agents on final network state, for
small-world and scale-free networks of degree 2.

for networks of degree 2 in Figure 4.12 are representative for all network sizes. We
observe that stubborn agents pull the whole network toward their cooperative state.
However, this effect decreases with each additional stubborn agent, following the law
of diminishing returns. Scale-free networks in particular show this effect of diminish-
ing increase, which can be explained by the fact the in such networks a small number
of hubs take part in a majority of the connections. Once their state is fixed, the rest of
the agents follows quickly.

Finally, we observe both here and above that scale-free networks have a stronger
tendency to induce cooperative behaviour. This is in line with findings reported by
e.g. Santos and Pacheco (2005), who observe this for the prisoner’s dilemma and
snow drift game played on networks. In their work, Santos and Pacheco focus on
selection dynamics only through the evolutionary mechanism of imitation. The fact
that these findings hold as well for the stag hunt, and under the selection-mutation
dynamics of LFAQ, further validates their claim.

4.5 Discussion

In this chapter we have discussed lenience as an enabler for cooperation in those scen-
arios where multiple agents need to coordinate to reach the global optimum, which is
hindered by the high cost of mis-coordination. This problem, known as action shad-
owing or relative overgeneralisation, can be effectively solved by being lenient, i.e.,
by optimistically focusing on maximum rewards, rather than average rewards as is
common in many learning algorithms. We have demonstrated the effectiveness of le-
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nience in two-player normal form games, in the n-player stag hunt, and finally in the
context of learning in social networks.

The n-player stag hunt is an interesting and well-defined game for those research-
ers interested in scaling their analyses and approaches to game-theoretic interactions
with more than two players. The n-player stag hunt exhibits two interesting critical
parameter settings for which equilibria shift. This is in contrast to (1) the n-player
prisoner’s dilemma, which always has one strict Pareto-dominated Nash equilibrium
of full defection, regardless of chosen parameters and group sizes, and (2) the two-
player stag hunt, which always has two strict pure Nash equilibria of full defection
and full cooperation. The n-player stag hunt provides a middle ground, gradually
mixing the two sets of dynamics based on the chosen parameters. We have provided
an intuitive analysis to demonstrate these critical parameter settings.

Moreover, we have proposed networked replicator dynamics that can be used to
model learning in (social) networks. The model leverages the link between evolution-
ary game theory and multi-agent learning, that exists for unstructured populations,
and extends it to settings in which agents only interact locally with their direct network
neighbours. We have shown the power of this model in evaluating and comparing
learning algorithms in various complex social networks, while varying their paramet-
ers and structural properties. In future work, the networked replicator dynamics can
be further validated by comparing the findings presented here to the dynamics that
would result from placing actual learning agents, rather than their dynamical model,
on the network. One can also look at networks in which different types of learning
mechanisms interact, by modelling each agent by a different set of replicator equa-
tions. This can be easily integrated in the model. An interesting question that arrises
in this context is weather the location of lenient agents in the network affects their
beneficial influence.

Depending on the nature of the game and the opponent, a balance needs to be
found between lenience on the one hand, and the risk of being exploited, or lagging
behind a changing environment, on the other. It is always important to keep in mind
the original aim of lenience: alleviating the relative overgeneralisation problem. Games
that do not exhibit this problem may potentially be problematic for lenient learners.
For example, in the case of pure coordination games, where players do not have a
preference over joint actions as long as they are in line, lenience may delay agreement
on one specific equilibrium. Moreover, in competitive games a lenient learner risks
being exploited by a skillful opponent. Both problems can be (partially) mitigated by
varying the degree of lenience, typically by decreasing it over time, as suggested by
Panait et al. (2006). Alternatively, one could attempt to learn when to change from
lenient to non-lenient.
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Networks are everywhere: in the cells of our body and our brain, in technological
systems such as power grids and the World Wide Web, in financial or economical in-
stitutions such as the stock market, and in our private social life. As such, understand-
ing how the individual elements in these networks interact is of vital importance. In
particular, research interest has gone out to the question under which circumstances
individually rational decision makers will cooperate, given that cooperation is costly
from an individual standpoint, but beneficial for society as a whole (e.g. Nowak and
May, 1992; Santos and Pacheco, 2005; Nowak, 2006; Hofmann et al., 2011; Rand
and Nowak, 2013). Mostly, these works have been limited to empirical simulations
of specific types of networks. Moreover, the majority of related work deals with the
situation where agents pick from a discrete set of actions. We took a similar approach
in the previous chapter, where agents either cooperate or defect. The agents may mix
probabilistically over their actions, however the action they execute is pure. In con-
trast, in the following we investigate the scenario where agents have a continuum of
actions to choose from, ranging from pure defection to pure cooperation. The agents
choose a cooperation level, i.e. the amount of effort they want to invest in the inter-
action, and their payoff is based on this choice. We hypothesize that this change from
discrete to continuous actions has a beneficial effect on the overall cooperation level
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in the network.

In this chapter, we present the continuous action iterated prisoner’s dilemma, or
CAIPD for short. CAIPD is an analytical model, based on concepts and methods from
optimal control theory, that can be used to study the evolution of cooperation on arbit-
rary complex social networks. Using this model, we study the dependence of the final
cooperation level on the network structure. Finally, we show how the cooperation
level in the network can be influenced by incentivising one or more individual nodes.

5.1 Continuous Action Iterated Prisoner’s Dilemma

The standard prisoner’s dilemma model is limited by its binary nature: only two dis-
crete actions are available — pure cooperation and pure defection — whereas in many
real settings cooperation can be better thought of as being a continuous trait (Roberts
and Sherratt, 1998; Killingback and Doebeli, 2002). This simplification may hide
many interesting dynamics of cooperative behaviour, thereby limiting our understand-
ing of these more complex real-world settings. Therefore, we focus on a continuous
version of the prisoner’s dilemma in which the strategy space depicts the individual’s
level of cooperation, ranging from pure cooperation to pure defection.

We will now derive a dynamical model that describes the evolution of cooperation
in arbitrary complex networks, where players interact following a continuous-action
iterated prisoner’s dilemma (CAIPD). Firstly, the CAIPD model is derived for 2 players.
This model is then generalized to the N-player case.

5.1.1 2-Player CAIPD

In the 2-player continuous action iterated prisoner’s dilemma, each player can choose
their cooperation level from a continuous set of strategies. This is in contrast to the
classical prisoner’s dilemma described in Section 2.2.1, where players choose either
to cooperate or to defect, without any choice in between. This cooperation level can
be thought of as the amount of effort each agent is willing to spend on the interaction.
Let x; € [0,1] denote the strategy of the i player, with i € {1,2} representing the
two players. Here, x; = 0 corresponds to pure defection, while x; = 1 represents
pure cooperation. Cooperation is costly (it takes effort), but simultaneously produces
benefits for others. Specifically, a player pays a cost cx; while the opponent receives
a benefit bx;, with b > c. It is clear that a defector (i.e., x; = 0) pays no cost and
distributes no benefits. The fitness (payoff) of player i, f (x;), can be thus defined as:

f(x;) =—cx; + bx; (5.1)



5.1. Continuous Action Iterated Prisoner’s Dilemma 89

Using Eq. (5.1), the difference in fitness between two players can be derived as

Afji Zf(x])_f(xl)
= —c(x; —x;) — b(x; — x;)
= (—C— b)(xj_xl)

Following the imitation dynamics of Hauert and Szabé (2005), where player i switches
to the strategy of co-player j with probability p;; depending on their difference in
fitness, the following strategy update rule is derived:

xi(t +1) = (1—py;)x;(t) + py;x;(¢), (5.2)
where t represents the iteration number, and

pij =sig(yAfj;) = (1 +exp(—yAf;)) ™ (5.3)

describes the probability of strategy adoption. The parameter y > 0 determines how
selective the adoption is towards fitter strategies. In other words, Eq. (5.2) states that
the strategy of player i in iteration t + 1 is a mix of his and his co-player’s strategies
at iteration t, weighted by their difference in fitness. The expected change Ax;(t) in
strategies between iterations t and t + 1 can be written as:

Axi(t) = x;(t +1) — x;(¢t)
= (1 —pi)x;(t) + pyjx;(¢) — x;(t)
= Pij(xj(f) _xi(t))

Moving from discrete difference equations to continuous differential equations, we
first rewrite the expected change as Ax;(n§) = x;(né + &) — x;(nd), with & being the
update step size. Assuming infinitesimal changes, i.e. 6 — 0, the continuous time
dynamics of the 2-player CAIPD can then be written as

0]
_ iy 2P () = xi(0))
5§—0 o
:pij(xj(t)_xi(t)) (5.4)

In essence, Eq. (5.4) shows that the players’ strategies are always drawn to each other
and in the two-player CAIPD necessarily converge.
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5.1.2 N-Player CAIPD

Having introduced the 2-player CAIPD, in this section we detail the more general n-
player case. The n-player CAIPD is defined for a group of n players on a weighted graph
G = (V,W) (Section 2.3.1), where V= {vy, v,, ..., vy } represents the set of nodes (i.e.,
each player is represented by a node), and W = [w;;] denotes the symmetric weighted
adjacency matrix, where w;; € {0,1} is a binary variable describing the connection
between players i and j, V(i,j) € {1,2,...,n} x {1,2,...,n}. Further, w;; is assumed
to be zero for alli € {1,2,...,n}.

Let x; € [0, 1] denote the cooperation level, or state, of the player at node v;. A net-
work with state x and topology G is defined as G, = (G, x) with x =[x, x,,...,X,]"
If each node of G, is a dynamic player, updating his state according to

)E?i = hi(x), (55)

then the network G, can be regarded as a dynamical system in which the state x
evolves according to the network dynamics x = H(x).

Now that we have a general form for the network dynamics, the next step is to
determine h;(+) in Eq. (5.5) for alli € {1,2,...,n}. In order to derive h;(-) we again
follow the imitation dynamics of Hauert and Szabd (2005). For this, we need to de-
termine the fitness of each player. We assume that each player interacts with each
of his neighbours at every time step. Generalising the 2-player CAIPD, the following
fitness function can be computed:

f(xl) = —deg(vi)cxi + bZWUXJ
j=1

where deg(v;) is the degree of node v; (see Section 2.3.1).! In words, player i pays a
cost of cx; for each of his neighbours j, i.e., —deg(v;)cx;, and receives a benefit bx; for
all his neighbors j, i.e., b Z?’zl w;;x;, with w;; € {0, 1} indicating whether i and j are
connected. Therefore, the fitness difference between players i and j can be written
as:

Afji=fx)—f(x;)
N
= c(deg(vi)xl- — deg(Vj)Xj) + b(Z(ij - Wik)xk)

k=1

We can incorporate W in the probability that player i imitates player j, thereby deriving

IHere we assume binary weights in W. If the network weights are arbitrary, the node’s degree should be
weighted accordingly depending on the interpretation of the resulting game.
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the general probability function p;; = w;;-sig(yAfj;). Similar to Eq. (5.2), we can then
derive the strategy update rule for player i in the network by taking the average of the
individual interactions with each of his neighbours:

x;(t+1)=

" ()[Z(l pl,)x(t)+pl,xj(r)]

The strategy update Ax;(t) = x;(t + 1) — x;(t) can be written as

Axi(t) =

1 N
deg(vl-)[z(l —Pip)x(6) +Pi1x1(f)} —x;(t)

I —

These difference equations can again be converted to differential equations by assum-
ing infinitesimal time steps 6 — 0 as in Eq. (5.2), which yields

1 N
g(v;) |: ]Z:Epij(xj(t) - Xi(t))]

Therefore, h;(-), introduced in Eq. (5.5), is:

x;(t) = q

N
1
h. = Ao (t)—x:(t
() deg(vi)[;p”(x]() x;( ))]
We can rewrite this dynamical system by introducing the Laplacian of G, £(-) as

x(t) = —2(x(t))x(t) (5.6)

where

5.7

@ = _pu/deg(vl) ifi 7é ]
u Z:=1 Pik/deg(v(-) ifi = ]

To recapitulate, this model describes the dynamics of an arbitrary network G, in which
the nodes are players that interact with their neighbours following the continuous ac-
tion iterated prisoner’s dilemma, and update their strategies by probabilistically imit-
ating well-performing neighbours. Next, we present a detailed experimental analysis
of the dynamics of this model on various different networks.
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5.2 Evolution of Cooperation Under the CAIPD Model

We evaluate the proposed model experimentally on a number of networks with dif-
ferent structural properties. In particular, the Barabasi-Albert scale-free (Barabasi and
Albert, 1999) and Watts-Strogatz small-world networks (Watts and Strogatz, 1998),
both exhibiting many properties of real-world systems, are adopted.? First, we look
at the CAIPD dynamics on a number of example networks, highlighting the transient
behaviour of the model, and showing its explanatory power. Hereafter, we analyse the
long term behaviour of the model in terms of convergence. The fact that the model is
deterministic allows to simulate its dynamics exactly. In other words, the behavioural
results presented in the following are attainable through a single run of the model;
only initial conditions need to be varied to produce statistically meaningful results.

In the following, we set b = 2.5, ¢ =1, and y = 1. For small-world networks, the
rewiring probability 8 is set to % Unless stated otherwise, initially 50% of the nodes
are randomly selected to be cooperators — the others are defectors.

5.2.1 Transient Behaviour

The transient behaviour of CAIPD is investigated on a number of example networks
with different topologies and initial conditions. State variable trajectories (i.e, x;, for
i € {1,...,n}) are plotted over time for examples of both scale-free and small-world
networks in Figures 5.1 and 5.2, respectively. In both cases, we compare two relatively
small networks of 20 nodes each, with different average node degree {. The actual
network is also shown, with black nodes indicating initial defectors, and white nodes
indicating initial cooperators — in each case 50% of the nodes are randomly selected
to be cooperators, the others are defectors. In each scenario the network eventually
reaches a state of agreement, where all players have the same final cooperation level
in equilibrium, i.e., x; — x* for all i € {1,...,n}. This fact has indeed been proven
mathematically by Ranjbar-Sahraei et al. (2014b). Moreover, we observe that the final
cooperation level x* decreases as the network degree { goes up. Furthermore, the
scale-free network sustains a higher cooperation level than the small-world network
in this case. Note, however, that we compare only specific example networks here — a
more thorough investigation of these relations is presented later, in Section 5.2.2.

In a second experiment, we look at the influence of both network degree and the
initial number of cooperators in the network on the resulting dynamics. Figure 5.3
shows the mean network state over time for a scale-free network with 100 nodes and
average degree { € {2,4,6,8}. Different initial conditions are compared, by varying
the percentage of nodes that initially cooperates. For each scenario, we run 100 simu-

2See Section 2.3 for a description of both network types.
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Figure 5.1: Example of the CAIPD dynamics on scale-free networks (n = 20) with
different average degree . The initial configuration of the network is shown on the
right, with o indicating full cooperation, and @ full defection.

lations with different randomly generated initial states, average the resulting network
dynamics, and show the standard deviation using error bars. Again, we observe that a
higher network degree { leads to a lower cooperation level in equilibrium. Moreover,
as expected a higher percentage of initial cooperators yield a more cooperative final
state. Note that the standard deviation is rather large, in particular for averagely co-
operative states where x ~ 0.5. This can be explained by the fact that in such cases,
three groups of dynamics can be distinguished. Depending on initial conditions, the
network either tends to cooperation (x — 1), to defection (x — 0), or ends up in an
intermediate state where 0 < x < 1.

Similar findings are reported for small-world networks, shown in Figure 5.4. A
notable difference is the standard deviation, which is much lower in the case of small-
world networks. These networks seem more robust with respect to initial conditions,
which can be explained by their structural properties as compared to scale-free graphs.
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Figure 5.2: Example of the CAIPD dynamics on small-world networks (n = 20) with
different average degree . The initial configuration of the network is shown on the
right, with o indicating full cooperation, and @ full defection.

In particular, small-world networks exhibit a normally distributed degree distribution,
whereas scale-free graphs have a power law degree distribution. This means that in the
case of small-world networks, is it less important which nodes are initially cooperating,
the only thing that matters is how many are cooperating. Scale-free networks on the
other hand are characterised by the presence of hubs, which are highly connected
nodes with a large degree. Arguably, these hubs can be expected to exert a larger
influence on the overall network dynamics, an as such their initial state is important.
This effect will be further investigated below, and in Section 5.4.

Another interesting aspect of the model is interpretability. Often, internal node
dynamics are not readily interpretable from general game theoretic models. Using
our proposed model, studying the transient behaviour of the network can uncover in-
ternal dynamics and provide insights about the system. For instance, in Figure 5.2(a)
damped oscillations can be seen in the cooperation level of several individuals. Such
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Figure 5.3: Average state trajectory over time of scale-free networks, with N = 100 and
varying average degree ¢, under the CAIPD dynamics. Different initial conditions are
compared, based on the percentage of cooperators at t.

analysis can uncover relations between the nodes’ dynamical behaviour and their po-
sitions on the graph.

5.2.2 Long Term Behaviour

We have seen in the previous experiments that the proposed model converges to a
network-wise agreement. Here, we analyse the long term behaviour of the model fur-
ther for a range of networks. Specifically, we study the cooperation level in equilibrium
for both small-world and scale-free networks of different sizes n € {50, 100, 150, ...,500}
and average degrees { € {4,6,8,...,18}. For each setting, 100 graphs are generated
randomly; for each graph 10 simulations are run with different initial conditions, i.e.,
50% of the nodes are randomly selected to cooperate, the others defect. Each simula-
tion is run until the network has converged, and the final state is recorded.

Figure 5.5 shows the averaged results for both types of networks. The final state is
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Figure 5.4: Average state trajectory over time of small-world networks, with N = 100
and varying average degree ¢, under the CAIPD dynamics. Different initial conditions
are compared, based on the percentage of cooperators at t,.

depicted in gray-scale, where black is pure defection (x = 0). Lighter colours mean a
more cooperative final state; in this figure, white equals x = 0.4, as a higher average
cooperation level has not been recorded. The results indicate that the size of the
network does not play a major role in the overall network dynamics. In the case
of small-world graphs, a larger network size yields a marginally higher cooperation
level. For scale-free graphs, interestingly, the same relation holds when the degree
{ is low, however the trend reverses when the degree gets large ({ > 10). A large
network size combined with a high average degree leads to an unfavourable situation
for cooperators in this case; even to the extend that such scale-free networks sustain
a lower cooperation level than their small-world counterparts, whereas the reverse is
true for lower average degrees. Finally, it should be noted that in the case of scale-free
networks, in particular those of low average degree, a similar bifurcation of dynamics
can be observed as reported above for Figure 5.3. Depending on initial conditions, the
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Figure 5.5: Cooperation level at equilibrium in small-world and scale-free networks
of varying size and degree. In each case, 50% of the nodes is randomly selected to
cooperate initially, the others defect.
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Figure 5.6: Cooperation level at equilibrium in small-world and scale-free networks of
varying size and degree. In each case, the 20% highest degree nodes are selected to
cooperate initially, the others defect. Note: the color scale is different for both figures.

network either converges towards cooperation, or towards defection, with some cases
in the middle. For small-world networks this effect is not observed.

In light of these findings, we investigate what happens if we choose the initial set
of cooperators such that those nodes with the highest degree are selected. We use the
same set of networks, 100 for each combination of size and degree, but in this case we
pick the 20% highest degree nodes to be cooperators while the others are defectors.
Figure 5.6 shows the results. It is immediately clear that this change has a large
impact on the resulting dynamics of scale-free networks. The average cooperation
level increases significantly, from a maximum of 0.33 before, to a maximum of 0.54
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now, even though the number of initial cooperators dropped from 50% to 20%. For
small-world networks this is not the case, here we observe a drop from maximum 0.3
previously, to 0.08 now. As noted before, hubs are key in this case: their initial state
highly influences the resulting dynamics and convergence of the network. This result
is in accordance with the notion that scale-free networks promote cooperation due to
their power law degree distribution (Santos and Pacheco, 2005).

Finally, we compare our continuous-action model with its binary choice counter-
part, similar to the model studied by Hauert and Szabé (2005). The fitness func-
tion and strategy adoption probability are unchanged (Eq. 5.1 and 5.3), but players’
strategies are limited to the binary choice between full cooperation and full defection,
i.e., x; € {0, 1} for all nodes i. Instead of gradual strategy updates following Eq. (5.6),
we have one-step strategy switching dynamics following

x(t+1) = 0(2x(t) —1/2) (5.8)

where 6(x) is the Heaviside step function, i.e., 8(x < 0) =0 and 6(x > 0) = 1. Here,
% captures the transition probabilities for every pair of neighbouring nodes, given by

> — PlJ/deg(V,) ifi 7éJ
Y 1— 2;:1 Pu‘/deg(v,v) if i =_]

In words, Eq. (5.8) states that node i copies the strategy of neighbour j with probability

gij;

strategy E[x;(t + 1) | x(t)] is then mapped onto the binary strategy set {0, 1}.

while keeping his own strategy with probability 2;. The resulting expected new

We apply this binary model to the same set of networks of Figure 5.5, again aver-
aging over 100 random graphs and 10 uniformly random initial states for each com-
bination of network size n and degree {. We find that for small-world networks, co-
operation almost dies out. Only networks of degree { = 4 still show some probability
of cooperation, with an average state in equilibrium decreasing from 0.07 for n = 50
to 0.05 for n = 500. For any larger degree, the average state in equilibrium is below
0.01. For scale-free networks of degree 4 the situation is considerably better, with
the average equilibrium state this time increasing from 0.13 for n = 50 to 0.20 for
n = 500, a trend that was also observed in Figures 5.5 and 5.6. Again, any higher
degree network yields almost no cooperation at all, with an average equilibrium state
of less than 0.01, although in some individual cases with low degree and small size
some cooperation can still be observed.

These findings again confirm that scale-free networks are more prone to coopera-
tion than small-world networks. More importantly, the results show that allowing for
a continuous range of cooperation levels is highly beneficial, as this gives rise to at
least some degree of cooperation where in the binary case cooperators die out. Note
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that we have used specific parameter settings for the costs and benefits of coopera-
tion (c =1 and b = 2.5, respectively) together with a probabilistic strategy adoption
rule, in order to be comparable to the CAIPD model. In related work, higher levels of
cooperation have been observed in the binary choice setting either by decreasing the
cost-benefit ratio (Hauert and Szabd, 2005) or by using an ‘imitate-best-neighbour’
strategy update rule (Nowak and May, 1992).

5.3 Controlling Social Networks

In this section we investigate whether it is possible to control the network, by influ-
encing a subset of the nodes, in order to elicit a desired outcome. For example, when
the network represents economic relationships between companies, a government or
regulatory body may want to enforce certain economic behaviour, e.g. the adoption of
green technologies. Rather than trying to convince each company separately, identi-
fying and incentivising key players in the network may facilitate the process, as the
existing dynamics of the network may allow the desired behaviour to spread. Simil-
arly, politicians may want to rally people for their cause, in which case social networks
(in part) determine how views and opinions spread through society.

In the following, we will study the controllability of the networked CAIPD model,
using methods and techniques from optimal control theory. First, we convert CAIPD to
a piece-wise linear system, and incorporate control into the model. We then study the
theoretical reachability of any desired consensus within the network, by manipulating
a single player. Finally, we propose a heuristic control algorithm that can be used to
efficiently control the network by influencing a subset of the nodes.

5.3.1 Piece-wise Linear Model of CAIPD with Control Input

The CAIPD model is non-linear, as its state transition matrix % is a function of the
current state x (Eq. 5.6). Since £ encodes the fitness differences between each pair
of neighbouring nodes, the fact that it changes continuously in time along with x
means that the model assumes that each agent is able to continuously update not
only his own fitness, but also (his estimate of) the fitness of each of his peers. This
is not necessarily realistic or feasible in practice. Think about social interactions for
example. The fact that you interact with your friends or colleagues on a daily basis
does not mean that you are immediately aware of their well-being. You observe their
behaviour, but not necessarily their fitness. This holds even more so for economic
networks, where companies typically release their performance data quarterly, while
interacting with each other through the market on a day-to-day basis. Hence, fitness
estimates are realistically updated less frequently than the rate at which interactions
occur.
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To incorporate this fact, as well as to facilitate the use of optimal control tech-
niques, we introduce the concept of dwell time 7 as proposed by Jadbabaie et al.
(2003), and integrate this into CAIPD. The dwell time of a system is the time period
during which the system remains in a given state. In the context of CAIPD, we take the
dwell time to be the time period during which the state transition matrix £ remains
fixed. The state x can still be updated, but the underlying dynamics remain static.
Only once every 7 time steps will the players re-evaluate their (and their peers’) fit-
ness, after which the dynamics change following Eq. (5.7). Dwell time is incorporated
into CAIPD by rewriting the model of Eq. (5.6) as piece-wise time invariant:

() = —£,x(0), (5.9)

where £, = £ [x(kt)] forkt <t <(k+ 1)t and k =1,2,.... As T — 0, the piece-
wise linear system of Eq. (5.9) collapses to the original CAIPD model in Eq. (5.6), while
for T — oo a static consensus model, as proposed by DeGroot (1974), is attained (see
Eq. 2.9).

In order to incorporate control into the CAIPD model, we introduce | < n con-
trolled individuals, x,,X,,...,x;. These individuals are influenced by [ control sig-
nals, uy,u,,...,u;. These signals can be thought of as being generated from any ex-
ternal source such as news outlets, government regulations, or even distributed lead-
ers outside the network. Formally, considering the piece-wise linear CAIPD model in
Eq. (5.9). The external influence is incorporated by extending the model, following
Eq. (2.10), as:

X=—%,x+Bu (5.10)

where u = [u;,u,,...,u; ] is a vector of control signals, and

B— [ L ]
O(n—1)x1
is the input matrix. Note that although formally we choose the first [ nodes to be con-

trolled, this choice is arbitrary as we can re-order the nodes in any way by reshuffling
the rows of x, ¢, and B.

5.3.2 Reachability Analysis

In this chapter, the main aim is to reach network-wide agreement of the form x; = x*1,
with x* representing the desired cooperation level. Reachability of x; at time ¢, is
defined as:

Definition 2 (Reachability) A state x; is reachable at time t, if there exists a control
input u,(t) such that X; = lim,_, o, X(t; to,Xo, u,(t)), where x, = x(t,).
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Based on the modified CAIPD model of Eq. (5.10) and the above definition, we present
a theorem showing the reachability of any feasible agreement (i.e. 0 < x* < 1),
assuming a single controlled indivual. First, however, we provide a theorem upon
which our proof is based (Ranjbar-Sahraei et al., 2014b, Theorem 5). Theorem 1
states that, when the state of any node of the network is fixed to a reference value
Xef, €ventually the network converges to agreement where X = X,¢ - 1.

Theorem 1 (Ranjbar-Sahraei et al., 2014b, Theorem 5) Given that node k is fixed
such that x; = x,,s and x; = 0. Then, the CAIPD model of Eq. (5.9) can be rewritten as

X = —Bref.,%’kx (51 1)

where B = diag(b;) fori =1,2,...,n, with

p [0 =k
Tl 1 ifi#k

Then, x; = Xy as t = 00, forall i =1,2,...,n.

Essentially, Eq. (5.11) makes sure that the state of node k is never updated, i.e., x; = 0.
The proof of Theorem 1 is quite extensive, and therefore we will not repeat it here.
Instead, interested readers are referred to Ranjbar-Sahraei et al. (2014b). We now
proceed with our theorem.

Theorem 2 (Reachability of Agreement) For the CAIPD model with external influ-
ence in form of Eq. (5.10), any agreement 0 < x* < 1 is reachable at t, for arbitrary x,
by influencing a single controlled individual x, using the control input

— . T 1
r:{ e-sgn(e)+B' % x ife#0 (5.12)

B¢, x ife=0
with € > 0 and an error term e defined as e = x, — x*. Then

tl_lglo xX(t; to, Xg, U, (£)) = x"1.

Proof: We split the control process into two phases. In the first phase, the network is
driven toward the manifold e = 0 such that the controlled node reaches the agreement
value (i.e., x. — x*). In the second phase, the goal is to keep the system on that
manifold by ensuring that é = 0. Consider the Lyapunov function candidate V(e) =
%ez. It can be easily verified that V(e) > 0 with equality if and only if e = 0. The
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derivative of V(e) with respect to the system is:

V(e)=eé
=ex,

=e (—BTka + u)
Replacing the control input u, of Eq. (5.12) for e # 0 in the above leads to:
V =e(—e-sgn(e)) = —e¢le|

where |-| denotes the absolute value of a scalar. Therefore, following Lyapunov’s direct
method, if € > 0 then V — 0, and thus e — 0. This concludes the first phase of the
control process.

In the second phase, the network should be ensured to stay on the manifold e = 0.
The derivative of the error signal is computed as:

é=x,=—B % x+u (5.13)

Injecting the control input u, of Eq. (5.12) for e = 0 into Eq. (5.13) yields é = %, =
0, thus guaranteeing that the system stays on the manifold e = 0. Without loss of
generality, assume that the controlled individual is the first node in CAIPD model.
Then, the network dynamics can be written as:

X, 0 0 .. 0 x*
X9 gkzl ’gkzz e ’gkzn X9
X3 —_ gk:%l $k32 ce $k3n X3
Xp Ly, 2k £y X,

This is precisely the form of Eq. (5.11), with k = 1 and x,s = x*. Therefore, by
Theorem 1, x; - x* ast — oo foralli =1,2,...,n, thus concluding the proof. O

We visually support the presented theorem with a small experiment. Figure 5.7 shows
the result of applying the control signal of Eq. (5.12) on two sample networks, when
choosing x* = 1. In both networks, the Lyapunov function converges to zero around
t = 150, after which the system evolves on the e = 0 manifold until all individuals
reach pure cooperation. Convergence occurs around t = 600 and t = 2500 for the
scale-free and small-world network, respectively.

Theorem 2 shows that any arbitrary agreement can be reached by using one con-
trolled individual, and the control signal of Eq. (5.12). Although successful, two prob-
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Figure 5.7: Reachability of pure cooperation using a single controlled individual. For
both networks, n = 50 and { = 4; the small-world network is generated using a rewiring
probability = % The graph is shown on the left, the evolution of the network state in
the center, and the control signal on the right.

lems arise. Firstly, the aforementioned method makes use of only one controlled node,
and ignores the possibility of controlling a subset of nodes, which may yield more ef-
ficient control. Secondly, a systematic procedure for choosing the proper value of €,
which affects both control effort and speed of convergence, is not readily available.
To alleviate these issues, we propose an iterative control algorithm that can be used
to control an arbitrary subset of nodes.

5.3.3 Iterative Control Algorithm

We extend the previous technique to the case where several nodes of the social network
are externally influenced. In particular, we consider the general scenario in which
neither direct online measurements of the state values nor of the real system’s dwell
time 7, are available. Therefore, an optimal control policy u* is designed based on
the initial configuration of the system and the evaluation dwell time 7,,, which can
be thought of as the controller’s estimation of the real dwell time 7,.,. This control
policy aims at driving the system towards an arbitrary agreement x* in finite time T.
The dynamics of the estimated state vector X can be written as:

{ () = —£2%(t) + Bu,(t) (5.14)

X(to) = x(to),

fort; ; <t<t;withj= 12[LJ and t; = j - Teya-

Teval
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K4 j is a fixed Laplacian matrix computed according to X(t;_;) and B is the input
matrix as defined in Eq. (5.10). The cost function used to compute the optimal control
policy in the j‘* time period is defined as:

T
I, =J [€Q% +ulRu, ] dt (5.15)
&
where Q and R are the state and input cost matrices as in Eq. (2.12), with H = Iy,
and X = [X, x*l]T is the augmented state vector. The goal is then to determine u;(t)
such that the cost function of Eq. (5.15) is minimized for each j. Following Eq. (5.15),
along with the theory presented in Section 2.4.3, the optimal control law is:

u;(t) =K; (0)x(t) +K;,(t)x"1, (5.16)

with

{ o ) (5.17)

— —1pl;
K;, (t)=—R'B'P; (¢)

K; and K;, are computed by backward integrating the following Riccati equations:

P;(t) P;(t)£;+ £ P;(t)+P;(t)BR'B'P;(t)—Q
P, (1) = .Y;lez(t)+Pj(t)BR_1BTPj12(t)+QH (5.18)

The details of the proposed controller are given in Algorithm 2. Given the network
topology G, initial state x(t,), and fixed parameters, the controller provides control
dynamics K; (t) and K; (t) for j =1,2,..., [TLIJ, which can be used to generate the

control input as in Eq. (5.16) for controlling the real network Eq. (5.10) for ¢;_; <
t <t; and every j.

5.4 Numerical Verification

We evaluate the proposed step-wise controller numerically on a number of networks
with varying properties. In particular, as before we adopt scale-free and small-world
networks for the experiments. For all experiments reported in this section, the con-
troller is evaluated on 100 randomly generated networks for each setting in order to
ensure statistical significance. In all experiments, networks of 50 nodes with an av-
erage node degree { = 4 are used; the small-world networks are generated using a
0.5 rewiring probability. The CAIPD model uses b = 2.5 and ¢ = 1, as before. For the
iterative controller, Q = I, x 0.001 and R =I,,,, x 25 are used in the cost function
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Algorithm 2 Step-wise control

Input: G, X(to); B,Q,R, Tevals T
1: Initialize K;, K,

2: X(ty) «— x(ty), j«— 1
3: while j < | - | do
4. Compute ¢ ; using X(¢t;_;) and G according to Eq. (5.7)
5. P,P, <0
6: t'«T
7:  while t' > (j — 1) - Toya do {backwards integration}
8: Update P;(t"),P; (t') using Eq. (5.18)
9: Calculate K; (t), K;,(t") using Eq. (5.17)
10: t' —t'—6t
11:  end while
12:  Calculate uJ*.(t) using Eq. (5.16)
13:  Simulate the CAIPD model with £ i and u; for tig <t <t using Eq. (5.14)

and store X(t;)
14: jej+1
15: end while
Output: K;, K,

of Eq. (5.15). This ensures smooth control signals by penalising control effort more
than state error.. Unless stated otherwise, the network exhibits piece-wise linear dy-
namics of 7., = 50 (i.e. the real dwell time of the system). The controller step size is
similarly set to 7., = 50. The final agreement goal is pure cooperation, i.e., x* =1
for all nodes i € {1,2,...,n}.

The experiments are split into three parts. First, we investigate the influence of the
degree of the controlled nodes on the resulting network dynamics and convergence.
Secondly, we study the effect of the percentage of controlled nodes on both network
dynamics and control effort. Finally, we vary both the real system dwell time 7,y
and the controller’s estimate 7., in order to study the robustness of the proposed
algorithm with respect to these variables.

5.4.1 Influence of the Controlled Nodes’ Degrees

The first set of experiments considers which nodes should be controlled. Firstly, we
study the performance of the proposed control algorithm when influencing 20% of the
nodes, with either the lowest, average, or highest degrees. Figure 5.8 shows the results
for both small-world and scale-free networks — network dynamics without control are
plotted as well to provide a baseline. For each setting, we run the control algorithm on

3please note that we acquire similar results for various Q and R settings
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Figure 5.8: Comparing different sets of controlled nodes. In each case, 20% of the
network’s nodes are controlled. As a baseline, network dynamics without control are
plotted as well.

100 randomly generated networks, and report the average overall network dynamics;
error bars show the standard deviation. Two conclusions can be drawn from these
results. Firstly, controlling high degree nodes improves convergence to the cooperative
state for both types of networks. For both small-world and scale-free networks, the
final state approaches pure cooperation only when high degree nodes are controlled.*
Secondly, this effect is strongest for scale-free networks: controlling any other set of
nodes only marginally improves convergence over the no-control baseline. Intuitively,
these results can be explained by the fact that high degree nodes allow the control
input to spread quickly over the network. Moreover, in scale-free graphs few high
degree nodes are involved in the majority of all connections (so-called hubs), which
explains why these are of key importance in such networks. Moreover, the scale-free
degree distribution means that there is only marginal difference in degree for the
majority of all nodes (those in the body of the distribution, including the low and
average degree nodes).

“#Varying the cost matrices Q and R changes these results, but only quantitatively.
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Figure 5.9: Comparing the influence of the percentage of controlled nodes on network
dynamics (top) and control input (bottom), for small-world and scale-free graphs.

5.4.2 Varying the Percentage of Controlled Nodes

In the second set of experiments, the goal is to study the effect of the number of con-
trolled nodes on the overall performance, while keeping their type fixed. In the follow-
ing, the highest degree nodes are controlled, as this yielded the best results previously.
Figure 5.9 shows both the average network state over time and the corresponding
total control input for different percentages of controlled nodes.> Clearly, increasing
the number of controlled nodes improves convergence for small-world networks. For
scale-free graphs this effect is almost negligible; again this can be intuitively explained
by the scale-free degree distribution exhibited by such networks. The hubs are key —
as soon as they are controlled, adding more nodes does not significantly improve the
results. Moreover, it can be observed that the total control input increases with the
percentage of controlled nodes, although not proportionally: controlling more nodes
means that individually they need less input. It can also been seen that the control

SError bars are omitted for clarity of the figure; all standard deviations are in the same order of magnitude
as those reported in Figure 5.8.
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Figure 5.10: Comparing the influence of the percentage of controlled nodes on cost,
state error and control input for small-world (top) and scale-free graphs (bottom).

effort decreases over time. By design, backwards integration of Eq. (5.18) insures that
the control input u; — 0 as t — T, for all nodes i € {1,2,...,n}. However, this can
also be explained by the fact that initially the overall cooperation level tends to de-
crease (roughly from t = t, to t = 25), after which the trend reverses due to the initial
control effort. Once this first hurdle is taken, the intrinsic dynamics of the network
help to reach the desired cooperative state, and as such, less control effort is required.
Finally, note the piece-wise linear nature of the controller: every 7., time steps the
system dynamics change, causing a discontinuity in the control signal.

Figure 5.10 summarises more extensive experiments for a range of percentages
of controlled nodes, showing their effect on the total cost (Eq. 5.15), state error
(O, lIx(t) —x*|]), and control input (Eq. 5.16). All measures are normalised for
presentation purposes, i.e., for each measure the maximum value is normalized to
one and all other values are given relative to the maximum. The results again show
the relative insensitivity of scale-free graphs to the number of controlled nodes. As the
percentage goes up, the state error does not decrease significantly, even though the
total control effort does increase. For small-world networks an increasing percentage
of controlled nodes does lead to a significantly lower state error and cost, although this
effect diminishes as the absolute percentage grows. Depending on the cost function
parameters Q and R this gives rise to a trade-off between decreasing the state error
on the one hand, and the control input on the other.
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Figure 5.11: Influence of controller step size 7.,, on network dynamics and control
input for small-world networks.

5.4.3 Robustness with Respect to Dwell Time

In the last set of experiments we investigate the robustness of the controller with
respect to both the real and estimated system dwell time. So far both were in line, i.e.,
Treal = Teval = 50. However, in general we can expect that the real system dwell time
can only be estimated. As Algorithm 2 is in fact an open loop controller, this means that
the computed optimal control signal u*(t) may not work as well on the actual system.
As such, it is important to test whether a mismatch between 7,., and 7, affects
the effectiveness of the proposed control algorithm. In the following experiments, the
number and type of controlled nodes are kept fixed (the 20% highest degree nodes are
controlled), while the the controller’s step size T, is varied. Figures 5.11 and 5.12
show the average network state and control input over time for different values of
Teval When 7., = 50 for small-world and scale-free networks, respectively. Here,
Teva = inf means the controller assumes a fixed linear system, i.e., it never updates its
estimate of the system dynamics . Decreasing 7., improves convergence, although
the effect is small: even when a fixed linear system is assumed, the controller still
performs reasonably well. When T, < T,ea, the system convergence does not change
anymore (the graphs overlap). However the total control effort might still increase as
the controller overestimates the dynamics of the real system.

Finally, Figure 5.13 summarises a more extensive range of experiments where both
the real system dwell time 7,., and the controller step size 7., are varied. Reported



110 Chapter 5. Evolution of Cooperation in Social Networks

Scale Free,t __ =50
real

©

>

D o.

c

Qo

=

©

o

q) .

Q.

o

S o

(@]

0 | | | | | | | ; ; )
0 50 100 150 200 250 300 350 400 450 500
Time
008} T
— eval
g 0.06 _1eval_100
% PN Teval = 50
S 004 - Toa =2
4
=
5
0.02
O -
0 E ST ST il il T |
0 50 100 150 200 250 300 350 400 450 500

Time

Figure 5.12: Influence of controller step size 7., on network dynamics and control
input for scale-free networks.

in this figure is the total cost as computed in Eq. (5.15). Several observations can be
made from these results. Firstly, the curve showing 7,.,; = 0, meaning that the net-
work is continuously changing, shows that a smaller step size for the controller leads
to lower total cost. This is as expected, as the controller approximates the real system
dynamics progressively better. Note, however, that this comes at the cost of compu-
tational complexity, as the controller needs to run more iterations of it’s main loop
(lines 7-11 in Algorithm 2), each of which partially overlaps the previous iteration. A
similar conclusion can be drawn from the case of 7., = 25 — again, a smaller step size
yields lower total cost. In contrast, for larger 7., a (local) minimum can be observed
when the controller step size 7., exactly matches 7,.,;, after which the total cost rises
again. This is due to the controller overestimating the system dynamics, resulting in a
higher initial control effort than actually required. This effect was also noted before in
the discussion of Figures 5.11 and 5.12. Finally, it is interesting to observe that faster
changing networks (i.e. smaller 7,.,;) tend to yield lower total cost, in particular when
the controller step size is reasonably small as well. In such cases, the inherent dynam-
ics of the network help the evolution of cooperation, although some initial external
control is still required for convergence to the full cooperative state, as seen before in
Figure 5.8. In sum, a close match between the real system dwell time 7, and the
controller’s estimate 7., yields the best results; however, an exact match is not vital,
as the controller performs well within a range of step sizes.
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Figure 5.13: Influence of controller step size 7., on the total cost, for systems with
different real step sizes (indicated with 7, in this figure), for small-world (top) and
scale-free networks (bottom).

5.5 Discussion

In this chapter we have studied the evolution of cooperation in social networks, focus-
ing on means of controlling this evolution to achieve network-wide cooperation. We
have introduced the continuous-action iterated prisoner’s dilemma (CAIPD), a novel
model that allows us to analytically study dynamics in arbitrary complex networks.
This model is shown to provide insights into the sustainability of cooperation in such
networks. However, convergence to pure cooperation is not guaranteed and depends
highly on the network structure. Building on these findings, we have extended the
model to allow for external influence on arbitrary nodes. Reachability of network-
wide agreement on an arbitrary cooperation level has been proven, and a step-wise
iterative control algorithm was introduced that aims at minimising the control effort
and state error over time. Finally, the performance of this algorithm has been empir-
ically evaluated on various small-world and scale-free social networks.

Studying the (optimal) control of social networks is relevant for many real-world
settings. For example, politicians may try to convince particular well-connected indi-
viduals of their ideas, hoping those individuals will then spread their ideas through
their network. Similarly, the government might provide tax deductions to companies
that switch to sustainable production, hoping that their competitors follow automat-



112 Chapter 5. Evolution of Cooperation in Social Networks

ically due to market dynamics. As such, studying the control of social networks has
broad applicability, and many directions for future work can be taken. Of particular
interest would be to automatically identify the key nodes that should be controlled to
minimise cost or convergence time.
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This chapter is based on the following publications:

Hennes, D., Bloembergen, D., Kaisers, M., Tuyls, K., and Parsons, S. (2012). Evolutionary
advantage of foresight in markets. In Proc. of the Genetic and Evolutionary Computation
Conference (GECCO), pages 943-950.

Bloembergen, D., Hennes, D., McBurney, P, and Tuyls, K. (2015). Trading in markets with
noisy information: An evolutionary analysis. Connection Science, to appear.

Bloembergen, D., Hennes, D., Parsons, S., and Tuyls, K. (2015). Survival of the chartist:
An evolutionary agent-based analysis of stock market trading. Proc. of the 14th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS), to appear.

Markets play a central role in today’s society and find wide application ranging from
stock markets to consumer-to-consumer e-commerce (Angel, 2002; Bajari and Hortacsu,
2003). Success in market trading greatly depends on traders’ abilities to accurately
predict market trends. There are two main types of trading strategies in today’s mar-
kets: fundamentalists and chartists (Gehrig and Menkhoff, 2006; Taylor and Allen,
1992). Fundamentalists use a forecasting model that fits the actual economy, and
correctly identify the fundamental driving forces of the market. Chartists, also called
technical analysts, use an autoregressive process to predict future price developments
based on recent trends.

One might be tempted to conjecture that fundamentalists eventually drive chartists
out of the market. After all, chartists try to exploit an autocorrelation structure in the
price series which in turn is mainly a result of their own trading behaviour — not an
underlying feature of the market. Rational fundamentalists must surely be superior
as they base trading decisions on actual fundamental facts. However, fundamentalists
are not strictly rational. Future fundamental values (e.g. earnings or dividends) of a
company are not known at present time and must be predicted using a model. The
model must match the economy that drives the market and model parameters must
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be adjusted accordingly. A mismatch in model choice, or uncertainty in parameter
estimates that deviate from the ones that determine the underlying process inevitably
cause bounded rationality and thus the risk for false decisions.

Another aspect that plays a role is the amount of information available to the
traders. In particular, fundamentalists rely on forecasting knowledge, which may be
uncertain due to noise, or costly to acquire. It has been found both in simulation and in
human experiments that more information not always leads to better decisions. Spe-
cifically, averagely informed traders may be outperformed by uninformed traders that
rely solely on the current market price, and only insiders beat the market (Kirchler,
2010; Toth et al., 2007). One possible theory explaining this phenomenon is that
inside information may help to predict trends, whereas limited knowledge may be er-
roneous when the trend reverses; uninformed traders are safe from these systematic
mistakes (Huber, 2007).

As such, stock markets are highly complex systems, and studying strategic decision
making in this context is not straightforward. In particular, the sheer size of the ac-
tion space available to the agents in such systems prevents traditional game theoretic
approaches, as we applied so far in previous chapters. However, tools and methods
from empirical game theory allow us to gain valuable insights into important aspects
of the dynamics. In this chapter, we employ these tools to analyse stock market dy-
namics. In particular, we focus on the influence of noise and cost on the performance
of fundamentalists and chartists, thereby answering Questions 6 and 7 put forward in
the Introduction.

We analyse static markets in which traders follow a pre-set trading strategy, thereby
gaining insights into the relative performance of the different strategies. Moreover,
we check the resulting price series for stylised facts of real financial time series, which
indicates the validity of our model. Building on these insights, we then investigate
a dynamic market in which traders may switch to a more profitable trading strategy
at any time. Investigating which sets of strategies are stable under these evolutionary
dynamics predict which types of traders one may expect to find in real markets. Finally,
we investigate the effect of exploration (or mutation, in evolutionary terms) on the
market dynamics. In this setting, traders do not greedily pick the optimal action all the
time, but with small probability choose randomly, in line with reinforcement learning
algorithms such as e-greedy or Boltzmann Q-learning. This small change may yield
qualitatively different dynamics, where trading strategies that are otherwise driven
out of the market prevail.
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6.1 Market Model

Our market model is based on a continuous double auction with open order book,
in which all traders can place bids and asks for shares. We closely follow the market
model as described by Téth et al. (2007), Téth and Scalas (2007), and Huber et al.
(2008) in order to be comparable to their results. In the following we firstly describe
auctions and the daily operation of the market. We then discuss the value of inform-
ation, following the dividend discount model, and the trading strategies derived from
this model. Finally, we present the different noise and cost functions used in the ex-
periments.

6.1.1 Auctions

Auctions are highly efficient match making mechanisms for trading goods or services.
As such, they are employed by a number of real markets, such as telecommunication
spectrum rights auctions (McMillan, 1994) or the New York Stock Exchange (NYSE)
(Angel, 2002). In practice, there is a variety of rules that may be used to conduct
an auction. Each set of rules may result in different transaction volumes, transaction
delays, or allocative market efficiency. One sided auctions, especially with one seller
and many potential buyers, are popular in consumer-to-consumer e-commerce (Bajari
and Hortacsu, 2003; Barrot et al., 2010). Here, we focus on double auctions, which
essentially provide a platform for buyers and sellers to meet and exchange a commod-
ity against money. A taxonomy of double auctions especially tailored to automated
mechanism design can be found in Niu et al. (2012).

Double auctions maintain an open book of bids (offers to buy at a specified price)
and asks (offers to sell at a specified price). Two basic forms of double auctions are
the clearing house auction and continuous operation auction. In a clearing house
auction, orders are collected for a trading period (e.g., one day) and matched, or
cleared, after the trading period is closed. This mode of operation allows for high
allocative efficiency, but incurs delays in the transactions. In contrast, continuous
operation immediately establishes a transaction as soon as any trader is willing to
buy at the ask price. This mode allows higher transaction rates at the cost of some
allocative efficiency. Experiments in this chapter use the continuous operation mode,
as this reflects the day-time operation mode of many stock markets, such as the NYSE
(Angel, 2002).

6.1.2 Market Operation

The current value of a share is inherently determined by the revenue that one is expec-
ted to gain from holding the share in the future. In our model, these revenues come
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from dividends that are paid out regularly based on the number of shares owned at
that point in time. The stream of dividends follows a Brownian motion random walk,
given by:

D,=D, ;+e

where D, denotes the dividend in period t, with Dy = 0.2, and € is a normally distrib-
uted random term with u =0 and o = 0.01, i.e., € ~ A (u, 02) (following Téth et al.,
2007).

We simulate the market over 30 trading periods, following the procedure of T6th
et al. (2007). Each period lasts 10 - n time steps, where n is the number of traders
present. This ensures that all traders have ample opportunity to trade within each
period. All traders start with 1600 units cash and 40 shares, each worth 40 in the
beginning. At the beginning of each period, all traders put an initial bid or ask in
the book (opening call). Hereafter, at every time step a trader is selected at random
who can then either accept an open order, or place a new bid or ask, according to his
trading strategy (described below in Section 6.1.4). When an order is accepted, the
two traders involved exchange one share (the seller) in return for the asked price (the
buyer). At the end of each period, dividend is paid based on the shares owned, and
a risk free interest rate (0.1%) is paid over cash. The performance of the traders is
measured as their total wealth after the 30 periods, i.e., the sum of their cash and share
holdings, where each share is valued according to the discounted future dividends (see
below).

6.1.3 Dividend Discount Model

The dividend discount model is based on the theory that the intrinsic present value
of a share is based on the discounted sum of its future dividend payments. As such,
computing the current value of a share relies on a good estimate of these future di-
vidends, which is the core of the fundamentalist trading strategy. The most widely
used equation to compute this value is Gordon’s growth model (Gordon, 1959, 1962).
The model assumes that we require a certain rate of return r > 0 on our investment.
For example, if r = 0.005, a share must return 0.5% per trading period for it to be
a worthwhile investment. This rate r is also called the discount rate. Then, a future
dividend D, at time t has a current discounted value of

Dt
(1+nr)
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If we intend to hold the share indefinitely, the value of a share is equal to the sum of
future discounted dividends:

= D
V= - 6.1

ey ©D
Gordon’s growth model assumes that dividends grow at some constant rate g € [0, 1].
Then, if D, is the current dividend payout, the dividend t steps ahead will be D,(1+g)",
and therefore Eq. (6.1) can be written as follows:

= (1+g) 1+
V:ZDo( g) —p,1F8
~ T (1+r) r—g

Let us assume the dividends are constant over time, i.e. Vi : D, = D and g = 0. The
stock value simplifies to:

S D
V= ; T 6.2)

The infinite series of Eq. (6.2) converges to D + ?, as r > 0. For example, a stock
that pays a constant dividend of 0.2 per share has a current value of V = D + ? =
0.2+ % = 40.2. This reasoning underlies the starting price of 40 for each share,
given initial dividend value D, = 0.2.

Differently informed traders can be implemented by varying the amount of foresight
knowledge that they have about future dividends. Note that this applies to fun-
damentalists only; chartists rely on past data only, which is readily available. In
trading period t = k, we say that fundamentalists of the first information level, F,,
know only the dividend Dy, and in general traders of information level j, labelled F;,
know Dy, ..., Dy, ;. Therefore, the discounted dividend payoff that is guaranteed for
traders with information level F; is

and the future discounted dividends for t > k + j — 1 are estimated according to
Eq. (6.2) with a constant D = Dy 4:

i Diyj1 Diyjm ©6.3)
t=k+j—1 (1 +r) r '

As Eq. (6.3) estimates future discounted dividends from period t = k+ j — 1 on,
Eq. (6.3) itself must be discounted by ﬁ to adjust payouts to current value prices.
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Figure 6.1: Example of a Brownian motion dividend stream, along with projected share
values following the dividend discount model for information levels 3 and 9.

The complete stock value estimate for trader F; is thus:

B Dy Dyyj
E(VIF;, k)= Z (1+r) r(l +r)i-1 ©-4)

To put it intuitively, a trader of information level F; knows j future dividends and as-
sumes dividends stay fixed from that point on. This results in a cumulative information
structure, where insiders know at least as much as averagely informed traders. Fig-
ure 6.1 shows an example dividend stream, together with the resulting projected share
values following Eq. (6.4) for information levels 3 and 9. The function E(V) is only
plotted for 30 trading periods, which is the number of periods used in our simulation.
The dividend stream is computed for 30 + max j steps, where max j is the highest in-
formation level (plotted in grey in Figure 6.1). This ensures that fundamental traders
always receive new information. Moreover, this extended dividend stream is used to
compute the final monetary worth of stocks at the end of the simulation (see Sec-
tion 6.1.2). The figure shows the effect of foresight: fundamental traders accurately
value the shares ahead of time, based on their knowledge of future dividends.

6.1.4 Trading Strategies

We use three different trading strategies in our experiments. Fundamentalist use their
knowledge of future dividends to estimate the current value of the stock and base
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their trading decision on that estimate, and chartists look for trends in the past market
prices. Moreover, the zero-information strategy, which only takes the current market
price of the shares into account, serves as a baseline for comparison.

Fundamentalists

Fundamentalists completely rely on the information they receive. The fundamentalist
strategy is explained in Algorithm 3 (see also T6th and Scalas, 2007). In essence, the
traders compare their estimated present value pv = E(V|F;, k), as given by Eq. (6.4),
with the current best bid and ask in the book. If they find a bid (ask) with a higher
(lower) value than their estimate, they accept the offer. Otherwise, they place a new
order between the current best bid and ask prices. Naturally, the trader should own
enough shares or cash to accept or place an order.

The cumulative information structure described by the dividend discount model
allows to compare fundamentalists with different amounts of foresight knowledge. In
the experiments presented in this chapter we use a range of fundamental strategies,
with information levels 1 through 9.

Chartists

Chartists analyse past trading prices, and look for trends. If they see an upward trend
in the market price, they see this as an opportunity to buy; if the trend goes down,
they sell. The algorithm used in this work is summarised in Algorithm 4 (see also
Téth and Scalas, 2007). The traders look only at the differences between the four last
prices. If each of these differences is positive, the chartist expects an upward trend
and is willing to buy at a slightly higher price (lines 2 and 3). If the differences are
negative, the expectation is a downward trend, and similarly the chartist will try to
sell at a slightly lower price (lines 9 and 10). If no trend can be observed, the chartist
places a new order in the book.

Zero-Information Traders

The zero-information trading strategy only takes the current market price into account
when deciding whether to accept or place an order. These traders simply trade ran-
domly around the current market price. Specifically, zero-information traders use the
fundamentalist strategy given in Algorithm 3, with the difference that line 1 is re-
placed by pv « Py, where P, is the current market price at time k. The reasoning
behind this strategy is based on the efficient market hypothesis, which states that all
available information is reflected in the market price (Malkiel, 2003). As such, trad-
ing around the market price could be a safe choice. The zero-information strategy
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Algorithm 3 Fundamentalist trading strategy

1: pv « E(V|F}, k) according to Eq. (6.4)

2: if pv < bestBid then

3:  acceptOrder(bestBid)

4: else if pv > bestAsk then

5:  acceptOrder(bestAsk)

6: else

7: Agx = bestAsk —pv

8:  Apiq =pv—bestBid

9:  if Ay > Apiq then
10: placeAsk(pv +0.25 - Ay;q - A(0,1))
11: else
12: placeBid(pv +0.25- A - A(0,1))
13:  endif
14: end if

Algorithm 4 Chartist trading strategy

1: pv « P, {current market price}
2: if P,_3 < P,_, and P,_, < P,_; and P,_; < P, then
3:  pvepv+|A4(0,1)
4:  if pv > bestAsk then
5: acceptOrder(bestAsk)
6: else
7: placeBid(pv)
8: end if
9: else if P,_; > P,_, and P,_, > P,_; and P,_; > P, then
10:  pv <« pv—|A4(0,1)]
11:  if pv < bestBid then
12: acceptOrder(bestBid)
13: else
14: placeAsk(pv)
15:  end if
16: else
17 Agy = bestAsk —pv
18: Ay, = pv— bestBid
19:  if Ay > Ay then
20: placeAsk(pv +0.25 - Ay - A(0,1))
21: else
22: placeBid(pv +0.25- Ay - A(0,1))
23:  end if
24: end if
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Figure 6.2: Different cost and noise functions used in the experiments.

serves as a base line for both fundamentalists and chartists. Fundamentalists with no
foresight (information level 0) trade following this strategy, as do chartists when they
do not observe any trend in the market price.

6.1.5 Cost and Noise

So far we have taken the foresight knowledge of fundamentalists as a given. Their in-
formation level determines how many trading periods they can look ahead, but other
than that the information is reliable and for free. In reality, acquiring such information
might be costly, and the data itself may be uncertain. For example, limited foresight
knowledge might be obtained by reading financial news letters and company state-
ments, whereas a detailed long-term outlook requires hiring experts. Similarly, short-
term foresight might be more reliable than long-term estimates. In order to model
these effects we introduce various cost and noise functions, which we then use in the
experiments in order to investigate their effect on the fundamentalists’ performance.
Chartists and zero-information traders rely on current and past market prices only,
which can reasonably be assumed to be freely available and reliable.

We use three different cost functions in our experiments. The fixed cost function
assumes that each fundamentalist pays the same fixed amount per trading period,
regardless of their information level. We can also assume that traders have to pay
for each additional bit of information, yielding a linear cost function. Finally, the
quadratic cost function is based on the idea that it gets increasingly difficult to obtain
more information. Figure 6.2a shows these three different cost functions; in each case,
traders pay the required cost at the end of each trading period.

Similarly, we employ three different types of noise functions to model uncertainty
in forecasting data, depicted in Figure 6.2b. Noise is added to each trader’s value
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estimate E(V) when executing Algorithm 3, drawn randomly from a normal distribu-
tion. In particular, line 1 of Algorithm 3 is replaced by pv « E(V|F;,k) + A4(0,0),
with sigma given as in Figure 6.2b. In the case of fixed noise, each trader experiences
the same level of uncertainty. More realistically, the uncertainty increases with the
amount of forecasting, especially when e.g. step-by-step prediction is used (Cheng
et al., 2006). This reasoning inspires the exponential noise function. Again, a linear
function is used as well as compromise between these two.

6.2 Experimental Setup

Extensive experiments are conducted to highlight the effect of both cost and noise
on the performance of the different trading algorithms. We distinguish various scen-
arios, based on the particular cost and noise functions used (see Figure 6.2). The
experiments are divided in two parts. In the first part, reported in Section 6.3, the dis-
tribution of trading algorithms in the market is kept fixed, i.e., each trading strategy is
used by the same number of traders. This allows us to get a first insight into the mar-
ket returns given the various cost and noise scenarios. Moreover, we take a detailed
look at some of the characteristics of the resulting price series, and compare those to
stylised facts found in real price series data.

In the second part, reported in Section 6.4, traders are allowed to switch their
strategy if this is profitable. Using the tools of empirical game theory, described in
Section 2.2.4, we perform an evolutionary analysis of the market dynamics, and invest-
igate which strategy is strongest from a natural selection point of view. This analysis
shows how the market evolves, and which strategy or set of strategies are economically
viable in the long run under the different cost and noise scenarios. Moreover, these
findings predict what might happen if trading agents learn to optimise their strategy
over time. Finally, we look at the effect of mutation, caused by random exploration of
the learning agents, on the market dynamics.

In each of the experiments we simulate the market following the model and pro-
cedures described previously. Two aspects of the simulation introduce stochasticity in
the results: the generation of the dividend stream, and randomness in bid and ask
prices by the traders, following Algorithm 3 and Algorithm 4. In order to produce
statistically significant results, we perform sets of simulations for different randomly
generated dividend streams, where each set consists of a number of simulation runs
to average over the randomness in trading behaviour.
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6.3 Simulating a Static Market

This section is further divided in two parts. Firstly, we investigate the value of informa-
tion, looking at markets where only fundamentalist traders with different information
levels are present. Thereafter we include chartists in the market as well, and invest-
igate under which circumstances they are able to compete with fundamental traders.
Moreover, we analyse statistics of the resulting price series and compare these to styl-
ised facts that are typically found in real stock market price series data.

6.3.1 The Value of Information

Previous work has shown that the value of information does not necessarily increase
monotonically for traders in a stock market (Kirchler, 2010; Téth et al., 2007). In par-
ticular, it was found that averagely informed traders under-perform the market, and
are beaten by both insiders and by zero-information traders, leading to a J-curve for
the value of information. Only insiders consistently beat the market. Here, we extend
these results to situations in which information can be costly or subject to uncertainty.
We simulate the market with n = 100 traders, 10 for each of the information levels
j€{0,1,...,9}, depicted subsequently as {ZI,F;,F,,...,Fo}.! Different scenarios are
investigated based on the various noise and cost functions described previously in
Section 6.1.5. To reduce the effect of randomness we run 100 sets of 100 simulations
for each scenario; the dividend stream is fixed for each set. Results are given as the
relative performance with respect to the market average plotted against the traders’
information levels.

Figure 6.3 shows the relative return over information level for different cost func-
tions. When no cost is involved, the market behaves as expected based on previous
work (Kirchler, 2010; Téth et al., 2007). Traders with little information are not able to
make any profit, and would be better off not using their fundamental information at
all. Both zero-information traders and averagely informed traders perform at market
average, and only highly informed insiders beat the market. Clearly, insiders are able
to exploit those traders that rely fully on their limited forecasting abilities, whereas
they are actually missing important trends that insiders are aware of. Moreover, the
fact the uninformed traders achieve market average performance indicates that this
strategy is indeed a safe choice. Adding fixed cost or linear cost does not change the
result dramatically, and the J-curve is preserved. However, zero-information traders
profit from not having to pay any cost; as a result their performance is now signific-
antly above market average. The situation changes when quadratic costs are incurred.

nformation level 0 represents the zero-information (ZI) strategy.
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Figure 6.3: Relative return over information level, for a market with n = 100 traders,
10 for each information level. Different cost functions are used; the noise is kept zero.

Here, a tipping point can be observed when acquiring additional information costs
more than it adds.

Adding noise has a similar effect, as is shown in Figure 6.4. Insiders still win un-
der both fixed noise and linear noise, the situation is in fact very similar to the case
of fixed and linear noise reported above. However, since noise does not influence the
trader’s monetary wealth directly, zero-information traders are not able to profit in
this case. Instead, the noisy information affects the realised market price through the
fundamentalists’ trading behaviour, thereby influencing the zero-information traders
indirectly as well. When exponential noise is applied, the picture changes again. Sim-
ilarly, we observe a tipping point where the increased uncertainty for longer forecasts
outweighs their value. In other words, the signal-to-noise ratio of the forecasting in-
formation decreases with the length of forecasting. As a result, insiders are no longer
able to make a profit, and perform well below market average in this case.

Finally, we combine cost and noise in order to see how their effects might add
up. Figure 6.5 shows the results. Where both linear cost and noise independently
did not change traders’ relative profits significantly, it is clear that their combined
effect tips the scale: the relative return over information level shows again a tipping
point, after which more information does not pay off anymore. Interestingly, zero-
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Figure 6.5: Relative return over information level, for a market with n = 100 traders,
10 for each information level, for different combinations of noise and cost.



126 Chapter 6. Evolutionary Analysis of Stock Market Trading

information traders outperform fundamentalists in this scenario, a fact that will be
further investigated in Section 6.4. Other combinations of noise and cost show similar
results, although zero-information traders no longer win. Rather, averagely informed
traders do best in these settings. Exponential noise has the strongest effect, as could
also be observed previously.

These results show that the value of information is not simply monotonically in-
creasing. Instead, depending on factors such as noise and cost, there might be a tip-
ping point where acquiring more information does no longer pay off. Either the cost
involved becomes to large, or the increased uncertainty causes the new information
to be detrimental rather than helpful.

6.3.2 When is Charting Profitable?

We will now investigate the role of chartists in the market. In particular, we are in-
terested in the viability of the chartist strategy in a market that is essentially dictated
by a random process (the dividend stream). After all, chartists rely solely on the pres-
ence of trends in the market price. We simulate a market with four types of traders:
zero-information (ZI), fundamentalist with information levels 3 and 9 (F; and Fy),
and chartists (C); 10 traders are used for each strategy. Again, we consider different
scenarios using the cost and noise functions of Figure 6.2, and evaluate the relative
return for each trading strategy, averaged over 100 sets of 100 runs each.

The results are presented in Figure 6.6. The addition of cost has an equalising effect
on the traders’ performance (Figure 6.6a). As fundamentalists get increasingly taxed,
zero-information traders and chartists can both profit. The reason is that, as argued
before, costs are only subtracted at the end of each trading period, and as such they
do not influence the price dynamics of the market. In contrast, noise affects the price
dynamics of the market through the fundamentalists’ trading behaviour, indirectly
influencing the performance of chartists as well (Figure 6.6b). In this case, increasing
noise levels cause the market to be even less predictable, as short-term trends caused
by the fundamentalists’ foresight knowledge are scrambled. This causes a significant
decrease in the chartists’ performance. Finally, the combination of cost and noise
causes their effects to add up (Figure 6.6c). The combination of linear noise with
either linear or quadratic costs (the left two panels) leads to a situation where zero-
information traders achieve the highest performance; in the other cases averagely
informed traders do best.

Summarising, we can conclude that chartists are clearly in a disadvantageous po-
sition when fundamentalists’ information is noisy. In none of the noise scenarios
chartists are able to make any profit — in fact, they perform worst of all trading
strategies. The situation is different when no noise is present. In these scenarios,



6.3. Simulating a Static Market 127

None Fixed Linear Quadratic
0.2 0.2
0.1 0.1
: % :
-0.1 -0.1
-0.2 -0.2
zZl F; Fg C zZl F, Fg C zZl F, Fg C zZl Fy Fg C
(a) Different cost functions.
None Fixed Linear Exponential
0.2 0.2
0.1 0.1
0 0
-0.1 -0.1
0.2 0.2
Zl F3 F9 (¢} VAl F3 F9 C ZI F3 F9 C ZI F3 F9 C
(b) Different noise functions.
Lin/Lin Lin/Quad Exp/Lin Exp/Quad
0.2 0.2
01 0.1
0 0
-0.1 -0.1
-0.2 -0.2
zZl F, Fg C zZl F, Fg C zZl F, Fg C zZl F, Fg C

(¢) Combination of noise and cost.

Figure 6.6: Relative returns in a market with a mix of trading strategies, including zero-
information traders (ZI), fundamentalists with information levels 3 and 9 (F; and F,),
and chartists (C). A total of n = 40 traders are used, 10 for each strategy.

perform on similar level to zero-information traders, and are able to beat averagely
informed fundamentalists (F3).

It is clear from these results that both cost and noise can have a large influence on
the relative performance of various trading strategies. We analyse these effect in more
detail in Section 6.4, where we apply an evolutionary model to study the dynamics of
a market in which traders may switch to more profitable strategies. As such, we can
analyse which set of strategies is in equilibrium, and which strategies will die out in
the long run under evolutionary pressure.
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Figure 6.7: Example of a normalised histogram of market returns.

6.3.3 Checking for Stylised Facts

Time series data of many real-world financial assets share a set of common stylised
statistical facts (Cont, 2001). In particular, the distribution of returns is character-
ised by a heavy tail; there is no significant autocorrelation of returns except for very
small (intra-day) time scales; and large price fluctuations tend to be grouped together
(volatility clustering). In the following, we check the price series generated by our
market model for these stylised facts, focusing in particular on the effect that chartists
may have on these measures.

We analyse the price signal resulting from one individual run of the market, both
with and without chartists, using the same dividend stream for both scenarios.? Spe-
cifically, we record the realised prices at every buy and sell action, yielding 4526 price
points for the market without chartists, and 5980 price points for the market including
chartists. From these data we obtain the log return series r as

_ log(P;,,) —log(P;)
At

r(i)

where P; is the i'" realised price, and At;_,;,; represents the time difference between
two consecutive price realisations. Figure 6.7 shows a normalized histogram of the
market returns both with and without chartists. Visual inspection indicates that the
distribution of returns resembles a normal distribution, but has a thinner body and
bigger tails. In order to verify this, we compute the skewness and kurtosis of the
returns. The skewness measures the anti-symmetry in the distribution of a random

2Similar results are obtained for different dividend streams and simulation trials.
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Table 6.1: Descriptive statistics for the time series of returns generated by our market
model, compared to real-world data of the S&P500 index.

Data Skewness Kurtosis
S&P500 index futures -0.40 15.95
Market without chartists -0.45 20.47
Market with chartists -0.44 24.57
variable x as
E[(x—u)?]
= —

A skewness of zero means that the data is perfectly symmetrical around its mean. The
kurtosis describes the ‘peakedness’ of the distribution, computed as
E[(x—w)?]
K= — 3

where a positive value of k indicates a heavy tailed distribution. In particular, a nor-
mal distribution has a kurtosis of k = 0. We compare these statistics to those of the
S&P500 index futures as reported by Cont (2001), in Table 6.1. The data shows that
the distribution of returns generated by our market model is indeed characterised by
a heavy tail. Moreover, the distribution is fairly symmetrical, as the skewness is close
to zero. Both statistics are in agreement with real data of the S&P500 index futures.

Finally, we look at the autocorrelation of the returns. The lack of significant linear
correlations in asset returns has been widely studied for many years (Cont, 2001;
Fama, 1970). It can be argued that this is a self-correcting property of any market,
since the existence of any dependencies in price series would be exploited by some
traders, who by that act effectively erase those dependencies (Fama, 1965). Moreover,
a negative autocorrelation of the return series of consecutive transaction prices may be
observed, caused by the alternation between buy and sell actions close to ask and bid
prices, respectively (Cont, 2001). Additionally, the autocorrelation of squared returns
is a quantitative signature of volatility clustering (Cont, 2001). This means that large
price variations are often followed by similarly large price variations.

The autocorrelation of a discrete time series X = {x;,Xs,..., X} is measured at
different lags 7, indicating the time difference between samples for which the correl-
ation is tested (Box et al., 1994). Figure 6.8 shows the autocorrelation of returns and
squared returns for the market with and without chartists. Without chartists, both
measures diminish quickly. When chartists are present, on the other hand, the auto-
correlation of squared returns diminishes slowly, indicating some volatility clustering
in this case. Therefore, the presence of more diverse trading strategies seems to yield
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Figure 6.8: Example of the autocorrelation of returns (solid line) and squared returns
(dashed line), resulting from our market model. The straight lines indicate the confid-
ence bounds.

more realistic price dynamics. However, note that these findings are based on a single
scenario - more extensive analysis is required to make a strong claim. In sum, the
market model generates price series that exhibit several stylised facts of real-world
financial time series data, supporting the validity of our model.

6.4 Evolutionary Analysis

So far, traders have not been able to choose their strategy. Instead, the distribution
over trading strategies was kept fixed throughout the simulation. Realistically it can
be assumed that traders may be inclined to switch strategy if they are currently per-
forming poorly. In the following we look at the dynamics of a market in which traders
are free to change their strategy at any time. Based on the replicator dynamics of evol-
utionary game theory we visually inspect the dynamics of such markets. This analysis
gives insight into the evolutionary strength of various trading strategies, and the fixed
points of the dynamics predict the distribution of trading strategies that may be found
in a market in equilibrium.

6.4.1 The Evolutionary Advantage of Foresight

We compute heuristic payoff tables, as described in Section 2.2.4, for various scen-
arios using different cost functions and different types of noise. Each heuristic payoff
table is computed using market simulations with n = 24 traders, including the zero-
information strategy (ZI), and fundamentalists of types F5, and F,. This gives 325
rows in the payoff table for the various discrete distributions over these three types.
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(c¢) Linear cost (d) Quadratic cost

Figure 6.9: Vector field showing the evolutionary dynamics of a market with three
information levels and different cost functions for information. The noise is kept at
zero.

Choosing different information levels for the fundamentalist traders does not change
the results qualitatively. For each row in the table we run the market simulation for
100 sets, consisting of 10 simulations each. Again, the dividend stream is fixed for
each set. As described in Section 2.2.4 we use the resulting payoff table to calculate
expected fitnesses for an arbitrary mix of these strategies, and plug these in to the
replicator dynamics of Eq. (2.6), yielding a dynamical system that can be inspected
visually. In the following, we plot traces of the dynamics as a three-dimensional sim-
plex, depicted as a two-dimensional triangle. The corner points represent the three
pure strategies; the fraction of each strategy diminishes towards the opposite side of
the triangle. We indicate stable fixed points with @ and unstable fixed points with O.

Figure 6.9 shows the resulting market dynamics for different cost functions. In
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Figure 6.10: Vector field showing the evolutionary dynamics of a market with three
information levels and different types of noise over information. Cost for information is
zero.

the absence of cost the best strategy is to get as much foresight as possible, leading
to a domination of Fy traders over the entire interior of the simplex, in line with the
J-curve reported earlier. Adding fixed cost gives a small boost to the zero-information
traders (as can also be observed in Figure 6.3), allowing them to survive in equilib-
rium alongside the insiders. Both linear and quadratic costs give rise to an internal
equilibrium where each type of trader can survive. Note however that the location of
this interior is close to ZI, meaning that is consists of relatively many zero-information
traders. The reason is again that zero-information traders are free from costs, which
gives them an edge in this case.

Slightly different results are obtained in the case of noise and presented in Fig-
ure 6.10. Adding fixed noise does not change the evolutionary success of the insiders,
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Figure 6.11: Vector field showing the evolutionary dynamics of a market with three
information levels and different combinations of noise and cost functions.

and the pure F, equilibrium is still the main attractor. Linear noise shifts the equilib-
rium to a mix of insiders and averagely informed traders; exponential noise leads to a
situation where only averagely informed traders prevail — interestingly, in each scen-
ario the zero-information traders are driven out of the market. Compared to cost scen-
arios described above, zero-information traders do not have an edge in this case. The
noise alters the fundamentalists’ trading decisions, thereby affecting the market price,
which in turn affects the zero-information strategy. In effect, the zero-information
traders indirectly receive the same unreliable information.

Finally, we again look at the situation where both cost and noise are present. Fig-
ure 6.11 shows the resulting dynamics of different combinations of cost and noise
functions. Linear noise and cost yield a situation where a mix of all three strategies
survives in equilibrium. Moreover, there is an unstable mixed equilibrium of zero-
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information traders and averagely informed traders. The other combinations of cost
and noise functions yield a mixed equilibrium where both zero-information and av-
eragely informed traders prevail — in these cases, this mixed equilibrium is the main
stable attractor. The presence of both cost and noise tips the scale in favour of the
less-informed, as acquiring more information becomes too costly to pay off.

6.4.2 Survival of the Chartist

We now look at the viability of the chartist strategy form an evolutionary perspective.
Experiments in Section 6.3.2 revealed that chartists only stand a chance when no
noise is present in the market; in any other case they are outperformed by all other
trading strategies. Therefore, we focus our evolutionary analysis on the cost scenarios
only, as these provide the most interesting point of analysis. As in Section 6.3.2 we
simulate a market with four trading strategies: zero-information (ZI), fundamentalists
of types F5 and F,, and chartists (C). We again follow the procedure described in
Section 2.2.4 to compute a heuristic payoff table, using 24 traders, distributed over
those four strategies. This yields 2925 different discrete permutations in the heuristic
payoff table. For each permutation, the relative performance of the involved strategies
is estimated by simulating 100 sets of 10 runs each.

Before, the dynamics of the market could be inspected visually by plotting the
three-dimensional simplex as a two-dimensional triangle, the interior of which de-
picts the full mixed strategy space. However, here we have four strategies, rendering
visual inspection difficult. However, we can get some insights by looking at the differ-
ent faces of the four-dimensional simplex, which represent those scenarios in which
one strategy is absent. Figure 6.12 shows the faces belonging to the strategy sets {ZI,
F;, C}, {ZI, Fy, C}, and {F5, Fy, C}, for the no cost and fixed cost scenarios. The sim-
plex faces {ZI, F5, Fy} are equal to those shown in Figure 6.9, as no chartists take
part in this case, and are therefore omitted here. When no costs are incurred, both
chartists and zero-information traders are consistently outperformed by fundament-
alists, in line with findings reported above. Interesting however is the face where
zero-information traders are absent: a mixed equilibrium appears where F; and F,
traders co-exist. When fixed costs apply, this mixed equilibrium becomes unstable
(Figure 6.12f); instead a stable attractor appears where chartists and insiders prevail.
Averagely informed traders incur relatively large costs in this scenario, and are driven
out of the market. When only one type of fundamentalists is present (Figures 6.12b
and d), a mixed interior equilibrium appears where all remaining strategies survive.

The linear and quadratic cost functions yield more complex dynamics, where all
faces of the simplex are qualitatively different, as shown in Figure 6.13. Again, those
faces where chartists are absent are omitted here, and can be found in Figure 6.9.
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Figure 6.12: Vector fields showing the different faces of the four-dimensional simplex
for a market with four trading strategies (ZI, F3, F,, and C), using no costs (left), and a
fixed cost function (right).
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Figure 6.13: Vector fields showing the different faces of the four-dimensional simplex
for a market with four trading strategies (ZI, F;, F,, and C), using a linear (left) and
quadratic cost function (right).
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Table 6.2: Stable equilibria of the four-dimensional simplex for a market with four
trading strategies (ZI, F5, Fo, and C), using different cost functions.

Cost function Equilibrium

( 71 > FS > F9 > C )
No cost (0.00, 0.07, 0.93, 0.00)
Fixed cost (0.27, 0.00, 0.39, 0.34)
Linear cost (0.36, 0.10, 0.21, 0.33)

Quadratic cost  (0.35, 0.15, 0.22, 0.28)

Of particular interest is the striking similarity between the the strategy sets {ZI, F,
C} and {F;, Fy, C} for both cost scenarios. In fact, the face {ZI, Fq, C} is identical
under linear and quadratic costs, as the cost for F, traders is the same under both
functions. Most importantly, chartists can survive in the market in each cost scenario,
with the exception of the {ZI, F5, C} face under quadratic costs (Figure 6.13b), where
the averagely informed fundamentalists perform best. In general, however, it can
be concluded that the trading behaviour of fundamentalists indirectly reveals their
foresight knowledge through the market price, and chartists are able to profit without
having to pay the price.

Although informative in many ways, looking only at the faces of the simplex does
not reveal the dynamics of the full mix of strategies. The linear and quadratic cost cases
in particular warrant further investigation, as each face of their corresponding simplex
shows a mixed equilibrium. This raises the question whether a fully mixed internal
equilibrium, where each strategy prevails, is present as well. Although visual inspec-
tion is difficult, we can locate attracting equilibria numerically by following traces of
the dynamical model, starting from different points in the strategy space. This can be
done systematically by selecting the starting points from a four-dimensional uniform
grid. Specifically, we select each point x = (x;, x4, X3, x4) such that the individual
components x; € {0.1,0.2,...,0.9}, constrained by Zi x; =1 to ensure a valid prob-
ability distribution. The results are reported in Table 6.2. As anticipated, the linear
and quadratic cost scenarios indeed give rise to an internal equilibrium where all four
trading strategies prevail. Moreover, in the case of quadratic costs the averagely in-
formed traders (F;) do slightly better than under linear costs, whereas chartists do
worse. This finding agrees with the first row of Figure 6.13, which shows the chan-
ging balance between F; and C in direct comparison. In the fixed cost scenario, the
F4 strategy dies out in equilibrium, as these traders are disproportionately taxed for
their knowledge. Finally, without any cost, both chartists and zero-information traders
disappear. Surprisingly, a small fraction of F5 remains; further research is required to
determine whether this is an artifact of the heuristic payoff table, as very little inform-
ation is available close to the corner points.
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6.4.3 Evolution with Mutation

So far, we modelled the evolution of the market using the standard replicator dynamics
(Eq. 2.6), which only consider the evolutionary process of selection. Here, we analyse
the effect of mutation on the resulting dynamics for a market with zero-information
traders (ZI), and fundamentalists with information levels F; and F,. Mutation can be
thought of as random exploration by the trading agents, who now not only copy the
strategy of successful peers, but try different strategies at random as well with some
probability. A simple exploration strategy is e-greedy, where agents choose their op-
timal action (selection) with probability 1 — €, and with probability € they randomly
choose any of their other actions (mutation). In our case we have three actions, yield-
ing the mutation matrix

which is then used in the selection-mutation dynamics of Eq. (2.8).

To show the effect of mutation on the market dynamics, we apply the selection-
mutation model to a market without cost and noise. Figure 6.14 shows the market
dynamics for different mutation rates €. Clearly, mutation matters. As traders ran-
domly choose their trading strategy with small probability, no strategy dies out com-
pletely. The equilibrium moves to the interior of the simplex, where the full mix of
trading strategies co-exists (Figure 6.14b). Increasing the mutation rate strengthens
this effect to the point where random mutation outweighs selection, and the strategy
mix becomes uniform (e.g., see Figure 6.14d). Also note that the three faces of the
simplex (indicated with dashed lines in Figure 6.14) become repelling, and the pure
equilibria disappear.

Here, we used standard replicator dynamics with a simple e-greedy exploration
strategy. However, similar results can be obtained when using more complex dynam-
ical models, such as the Boltzmann Q-learning dynamics of Eq. (3.5). As such, this
analysis also provides insights into the effect that different learning algorithms have
on the resulting market dynamics, when trading agents learn to optimise their strategy
over time.

6.5 Discussion

In this chapter we have employed the evolutionary model of replicator dynamics to
analyse the complex strategic interactions of stock market trading. In particular, we
used the model to study the value of information in stock markets, and to investigate



6.5. Discussion 139

F9 F9
ZI F3 Zl F3
(a) No mutation, e =0 (b) Mutation rate € = 0.01
Fo Fo
VA F3 2zl F3
(c) Mutation rate € = 0.05 (d) Mutation rate € = 0.2

Figure 6.14: Evolutionary dynamics in the presence of mutation. No noise or cost are
used.

under which scenario chartists are able to survive in the market.

Previous work has established the non-trivial relation between the amount of fore-
casting information available to a fundamentalist traders and their expected return.
Specifically, it has been observed that averagely informed traders perform below mar-
ket average and are outperformed by zero-information traders - only insiders prevail.
We have extended upon this work by investigating the effect of noise or uncertainty
with respect to forecasting information. Realistically, a longer forecast horizon may
lead to higher uncertainty or noise. We observe that the presence of noise changes
the market outcome in such a way that averagely informed traders may coexist with
insiders, driving zero-information traders out of the market. Putting a price on in-
formation similarly changes the market outcome, this time yielding an equilibrium
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where each type of trader can prevail simultaneously. A combination of cost and noise
may lead to a situation where additional information is too costly to obtain, driving
insiders out of the market. This shows that the J-curve that was presented in previous
work (Kirchler, 2010; Téth et al., 2007) may be not so much a general rule as it is a
special case.

Real markets include not only fundamentalists, but technical analysts or chartists
as well. Chartists rely on observable trends in the market price, and trade based on
the assumption that such trends continue. We have investigated the effectiveness of
such a strategy in our market model, and we found that chartists can indeed survive,
but only if information is costly. In such scenarios the chartists can profit from the
information that is represented in the market price due to fundamentalists’ trading
behaviour, without having to pay the price.

Moreover, we have checked the resulting market prices for stylised facts of real-
world financial time series. We found that a market which includes a diverse set of
trading strategies indeed yields realistic price series, which exhibit a fat tailed re-
turns distribution, lack of autocorrelation of returns, and volatility clustering. Finally,
we have shown that exploration, where traders with small probability select a ran-
dom trading strategy, alters the market dynamics in such a way that a mix of trading
strategies is present in equilibrium. These findings show that a good understanding
of the underlying dynamics are vital if any reasonable predictions about market out-
comes are to be made.



Conclusions

This final chapter concludes the dissertation. We summarise the main findings in
relation to the research questions put forward in Chapter 1. Moreover, we discuss
limitations and open problems for each of the topics covered and offer perspectives
for future research.

7.1 Contributions and Answers to the Research Questions

In Section 1.4 we defined the problem statement for this work and put forward 7 re-
search questions based on this to guide the work presented in this dissertation. We
now revisit these questions one by one and discuss them in light of the findings presen-
ted in Chapters 3 to 6.

Question 1: What is the current state-of-the art with respect to the study and analysis
of multi-agent learning using evolutionary game theory?

In Chapter 3 we have surveyed recent advances in the study of the evolutionary
dynamics of multi-agent learning. In particular, we presented the formal relation
between reinforcement learning and the replicator dynamics of evolutionary game
theory. By modifying the standard replicator dynamics, the behaviour of various state-
of-the-art reinforcement learning algorithms in a multi-agent setting can be modelled
accurately. Based on these models, we have demonstrated striking similarities in the
dynamics of very different multi-agent learning algorithms. So far, the link between
evolutionary game theory and multi-agent learning has been established in stateless
environments (e.g. normal form games), both with discrete and continuous action
spaces, and multi-state environments (e.g. stochastic games) with a discrete action
space. As such, an important avenue for future work is the extension of the theory to
stochastic games with continuous action spaces.
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Question 2: To what extent can lenience be effectively applied in multi-agent learning,
50 as to promote cooperation?

In Chapter 4 we have discussed lenience as an enabler for cooperation in those scen-
arios where multiple agents need to coordinate to reach the global optimum, which is
hindered by the high cost of mis-coordination. This dilemma, known as action shad-
owing or relative overgeneralisation, can be effectively solved by being lenient, i.e., by
optimistically focusing on maximum rewards, rather than average rewards as is com-
mon in many learning algorithms. Based on the underlying theoretical model of Panait
et al. (2008) we have proposed the practical learning algorithm lenient frequency-
adjusted Q-learning that exhibits the desired dynamics. We have demonstrated the
effectiveness of lenience in two-player normal form games, in the n-player stag hunt,
and finally in the context of learning in social networks. However, it is important to
keep in mind the original aim of lenience: alleviating the relative overgeneralisation
pathology. Games that do not exhibit this problem may potentially be problematic for
lenient learners.

Question 3: How can the evolutionary model of multi-agent learning be applied to net-
worked interactions?

In Section 4.4 we have proposed networked replicator dynamics that can be used to
model learning in (social) networks. The model leverages the link between evolution-
ary game theory and multi-agent learning, that exists for unstructured populations,
and extends it to settings in which agents only interact locally with their direct net-
work neighbours. The model is highly flexible, allowing to easily plug in various evol-
utionary models of learning algorithms, thereby facilitating their analysis. We have
evaluated this model in a range of experiments, showing the effects of various prop-
erties of both network structure and learning mechanism on the resulting equilibrium
state.

Question 4: How can a mathematical model be constructed to study the evolution of
cooperation on arbitrary complex networks?

In Chapter 5 we proposed the continuous action iterated prisoner’s dilemma as a suitable
model to study the evolution of cooperation in social networks. In contrast to most
related work which focuses on discrete action models (e.g. Nowak and May, 1992;
Santos and Pacheco, 2005; Nowak et al., 2010; Hofmann et al., 2011), we adopt the
intuition of Killingback and Doebeli (2002) that behaviour in real systems is rarely
discrete in nature, but should rather be viewed as a continuous trait. We derive a
mathematical formulation that allows to study convergence and stability of the model
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in arbitrarily complex networks. We evaluate the model in a range of small-world and
scale free networks, and find that scale free networks are more prone to cooperation,
with strongly connected hubs playing a major role. Moreover, cooperation diminishes
as the network connectivity grows. Finally, comparing our continuous action model
to a discrete version with a binary choice between cooperation and defection, we find
that continuous actions allow cooperation to prevail when it would otherwise die out
under binary choice dynamics.

Question 5: To what extent is it possible to efficiently control the evolution of coopera-
tion in social networks by influencing a subset of the networks’ nodes?

In Section 5.3 we have extended the continuous action iterated prisoner’s dilemma,
proposed in answer to Question 4, to allow for external control on a subset of the
nodes in the network. Using methods and techniques from optimal control theory
we then incorporated this control structure into the mathematical model. We have
proven reachability of any arbitrary final state of agreement within the network, by
influencing only a single controlled node. Moreover, we have proposed an iterative
control algorithm that can be used to efficiently and effectively control the network,
while minimising both control effort and state error. We have demonstrated the effect-
iveness of the proposed controller in a range of small-world and scale free networks.
Again, we found that hubs play an important role in determining the dynamics of the
network — focusing control on such nodes minimises the required effort.

Question 6: What are the effects of noise and cost on the value of information in stock
markets?

In Chapter 6 we have employed the evolutionary model of replicator dynamics to
analyse the complex strategic interactions of stock market trading. In particular, we
have investigated the effect of noisy and costly information on the performance of
fundamentalist traders. Realistically, a longer forecast horizon may lead to higher
uncertainty or noise. We observed that the presence of noise affects the value of in-
formation in such a way that averagely informed traders may coexist with insiders,
driving zero-information traders out of the market. Putting a price on information
similarly changes the market outcome, this time yielding an equilibrium where each
type of trader can prevail simultaneously. A combination of cost and noise may lead
to a situation where additional information is too costly to obtain, driving insiders out
of the market. This shows that the J’ shaped curve of the value of information that
was presented in previous work (e.g. Téth et al., 2007; Kirchler, 2010) may not be a
general rule but rather a special case.



144 Chapter 7. Conclusions

Question 7: Under which circumstances can chartists survive in a stock market that is
essentially driven by the foresight of fundamentalists?

Real markets include not only fundamentalists, but technical analysts or chartists as
well. Chartists rely on observable trends in the market price, and trade based on the
assumption that such trends continue. In Chapter 6 we have investigated the effect-
iveness of such a strategy, and we found that chartists can indeed survive, but only if
information is costly. In such scenarios the chartists can profit from the foresight in-
formation that is implicitly present in the market price due to fundamentalists’ trading
behaviour, without having to pay the price. In sum, a variety of outcomes are possible,
depending on whether or not cost and noise are a driving factor of the market. Fur-
thermore, we observe that adding mutation (or exploration in terms of learning) alters
the market dynamics as well. Mutation causes pure equilibria to disappear, in favour
of a single interior equilibrium where all trading strategies co-exist. These findings
show that a good understanding of the underlying dynamics are vital if any reason-
able predictions about market outcomes are to be made.

Summarising, this dissertation addressed the central problem statement put for-
ward in Section 1.4, and thereby contributed to a better understanding of the dynamics
of learning in networked multi-agent systems. In particular, Question 1 contributed
to a better understanding of the evolutionary modelling of multi-agent learning, and
Question 2 studied cooperation through lenience in multi-agent systems. Questions
3-5 extended the evolutionary framework to networked interactions, and investig-
ated the evolution of cooperation in societies of self-interested decision makers. Fi-
nally, Questions 6 and 7 involved the application of the evolutionary framework to
the study and analysis of trading in stock markets, thereby showing the applicability
of the framework to complex multi-agent systems and proving its value beyond the
analysis of stylised games.

7.2 Limitations and Perspectives for Future Research

In this dissertation we have discussed the dynamics of multi-agent learning, utilising
and building on the evolutionary framework of multi-agent learning that is given by
the replicator dynamics. We have contributed to the solution of three main problems,
by: 1) extending the evolutionary framework to those scenarios where the agents’
interactions are structured as a network; 2) showing how social cooperation can be
achieved in the face of individual rationality and self-interest; and 3) applying the
evolutionary framework beyond stylised normal-form games, to the analysis of the
complex multi-agent dynamics of trading in stock markets.
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These problems are by no means solved, and remain interesting and challenging
domains for further research. In the following we discuss potential extensions of the
work presented in this dissertation and provide perspectives for future research.

The Evolutionary Dynamics of Multi-Agent Learning

Progress in this area has been substantial in the past two decades. Based on the sem-
inal work of Borgers and Sarin (1997), who first proved the connection between the
replicator dynamics and reinforcement learning, a strong framework has been de-
veloped withing which to study the dynamics of multi-agent learning. We have sur-
veyed the state of the art in Chapter 3. So far, this has been established in stateless
environments (e.g. normal form games), both with discrete and continuous action
spaces, and multi-state environments (e.g. stochastic games) with a discrete action
space. As such, an important avenue for future work is the extension of the theory
to stochastic games with continuous action spaces. Extending the state-coupled rep-
licator dynamics to use probability density functions as policy representation, thereby
allowing continuous action spaces in a multi-state environment, would be a fruitful
starting point for such an endeavour.

In Section 4.4 we have extended the evolutionary framework to model learning in
networks, by locally coupling the replicator dynamics that govern each node. Although
a valuable first step, this approach can be further strengthened by moving towards
a high level dynamical model that describes the network as a whole. Such attempts
have been made previously, but only for specific network structures, in particular those
networks where all nodes have identical degree (Hauert and Szabd, 2005; Ohtsuki and
Nowak, 2006b), or are sufficiently random (Kearns and Suri, 2006). Extending these
models to arbitrarily complex networks is an interesting direction for future research.

Lenience

Lenience can be used to overcome suboptimal convergence in multi-agent settings due
to relative overgeneralisation, caused by a high variation in rewards for the optimal
action while other agents are still learning. In Chapter 4 we have shown the effective-
ness of lenience for learning in normal form games, as well as in networks. Depending
on the nature of the game and the opponent, a balance needs to be found between le-
nience on the one hand, and the risk of being exploited, or lagging behind a changing
environment, on the other. Moreover, lenience may actually hinder convergence in
those scenarios were no clear preference over equilibria exists. As such, an important
question for further research is to what extent lenience is safe when the environment
or opponent is unknown. One solution is to vary the degree of lenience, typically by
decreasing it over time, as suggested by Panait et al. (2006). Alternatively, one could
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attempt to learn when to change from lenient to non-lenient learning, for example by
tracking variance or trends in rewards.

In the setting of networks, two interesting questions arise. Firstly, one could in-
vestigate heterogeneous networks, where different agents (nodes) may use different
learning rules. Then, the location of lenient nodes may influence the dynamics of the
network. Hubs have shown to exert a strong influence on the overall network dynam-
ics, and as such one could conjecture that lenient hubs may be sufficient to prevent
suboptimal convergence network wide. Secondly, many real-world social networks
are not static, but change over time as nodes change their links, or as new nodes get
added to the network. In such dynamic settings, extra care need to be taken in tuning
the degree of lenience. Both issues warrant further research.

The Evolution of Cooperation in Social Networks

In Chapter 5 we have studied the evolution of cooperation in social networks using
the continuous action iterated prisoner’s dilemma (CAIPD). Moreover we have studied
the control of such networks by influencing a subset of nodes. In both cases we have
restricted ourselves to static networks only. As argued above, real social networks are
rather dynamic in nature, as new social ties form, or new people are added to the
network (Kossinets and Watts, 2006). Zimmermann and Eguiluz (2005), and Santos
et al. (2006), study a model in which individuals are allowed to choose with whom
to interact, e.g. by giving them the possibility to break ties with ‘bad’ neighbours and
replacing them with a random new connection. They show that such a mechanism
may promote cooperation. Similarly, Szolnoki and Perc (2009) study a model in which
links are added and removed following predefined rules outside of the individuals’
control, and similarly report that such dynamic networks may promote cooperation.
Recently, Ranjbar-Sahraei et al. (2014a) investigated the simultaneous emergence and
evolution of a network, using the CAIPD model, and found that structural emergence
and behavioural evolution are strongly intertwined. A deeper understanding of the
relation between these processes is needed in order to get a better understanding of
the evolution of cooperation in real-world networks.

Moreover, so far we have assumed that interaction and fitness computation are
based on one unique network. However, it is also possible to assume separate networks
for fitness computation and strategy update. For example, an individual’s fitness may
depend on a large number of interactions, whereas for only a small subset of those the
behaviour of the opponent is observable and hence can be copied. Wang et al. (2014)
investigate the effect of such double-layered networks, and find that the evolution of
cooperation may in fact be impeded if the degree distributions of both networks are
dissimilar. Incorporating such multi-layered network structures into the CAIPD model
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would be an interesting direction for future work.

Finally, regarding the control of such networks, it would be worthwhile to derive
a rule or mechanism to automatically determine which subset of nodes should be
controlled to minimise effort while maximising effectiveness. Our experiments have
indicated that hubs play an important role in the overall network dynamics, but it
could be argued that such nodes require a relatively bigger incentive. In an economic
sense, those highly connected agents know their worth, and act upon it. These are
considerations that should be taken into account as well.

The Analysis of Stock Market Trading

In Chapter 6 we analysed an agent-based stock market from an evolutionary perspect-
ive. We compared two trading strategies that are often found in real markets: fun-
damentalists and chartists, and investigated the influence of noise and cost on the
evolutionary dynamics of a market in which traders may switch their strategy if this
is deemed beneficial. Many interesting directions for future research can be identi-
fied. Taking a microscopic look at the trading actions in the market equilibrium may
give insights to the strengths and weaknesses of the different trading strategies. For
example, one might investigate when traders make or loose most of their money, by
comparing limit orders and market orders for the different trading strategies, as done
by Stockl and Kirchler (2014) for a market with only fundamental traders. Addition-
ally, the market model can be extended to include various assets, which may yield
more complex dynamics. Moreover, in line with our work on networks, it could be
assumed that, although all traders interact with each other in the market, they only
update their strategy based on the experiences of a subset of traders with whom they
have close contact. Similar analysis has been performed by Panchenko et al. (2013),
who studied the influence of local interaction networks on asset price dynamics. Fi-
nally, markets do not typically consist of a fixed set of traders; instead, traders may
continuously enter and exit the market, potentially shifting the equilibrium. This may
similarly yield more complex dynamics, which may further help to explain the diverse
set of traders usually found in real-world stock markets.
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Summary

Within the field of Artificial Intelligence, autonomous decision makers are referred to
as agents. When multiple such decision makers interact within a common environment
we are talking about a multi-agent system. Multi-agent systems are well-suited to
model a variety of complex large-scale problems in our society, such as automated
financial markets, the smart grid, (air) traffic control, and multi-robot systems. Each
individual agent affects its environment by taking decisions and executing actions,
thereby influencing the actions taken by other agents as well, thus yielding a highly
dynamic environment. Due to the sheer number of situations that may arise it is
not possible to foresee and program the optimal behaviour for each one beforehand.
Consequently, the success of the system depends on the ability of the agents to learn
to optimise their behaviour and adapt to new situations or circumstances. The field of
multi-agent learning is involved with precisely this problem.

The past two decades have seen the emergence of reinforcement learning, both in
single and multi-agent settings, as a strong, robust and adaptive learning paradigm.
Progress has been substantial, and a wide range of algorithms are now available. An
important challenge in the domain of multi-agent learning is to gain qualitative in-
sights into the resulting system dynamics, as the complexity of multi-agent interac-
tions renders theoretical analysis difficult. In recent years, evolutionary game theory
has been taken up as a promising paradigm within which to study multi-agent learning
formally. Its promise rests on the proven link between the behaviour of simple rein-
forcement learning algorithms, such as learning automata, and the replicator dynamics
of evolutionary game theory. The replicator dynamics predict the expected behaviour
of reinforcement learning agents in normal-form games.

In this dissertation we investigate the dynamics of learning in multi-agent systems
by building on the evolutionary game theoretic approach to multi-agent learning. The
thesis comprises four main contributions, which are briefly summarised here.

First, in Chapter 3 we survey current research on the evolutionary dynamics of
multi-agent learning, summarising the main results in this field so far. The formal
relation between the replicator dynamics and multi-agent reinforcement learning is
detailed and extensions of the model to various learning algorithms are presented,
both with discrete and continuous action spaces and in both single-state and multi-
state environments. We show how this analysis leads to new insights that can bridge
two seemingly diverse streams of research.

Secondly, in Chapter 4 we show how lenience can enable cooperation in multi-
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agent systems. A lenient agent ignores low rewards resulting from mis-coordination
due to the fact that the other agents are also learning. We propose lenient frequency-
adjusted Q-learning, investigate the dynamics of this new algorithm, and compare its
convergence properties to several other state-of-the-art learning algorithms. Experi-
ments in normal-form games and on graphs show that lenience improves coordination
in the well-known strategic scenario given by the stag hunt game.

Thirdly, in Chapter 5 we propose a new dynamical model for the continuous ac-
tion iterated prisoner’s dilemma on graphs, based on methods and techniques from
control theory. This model allows us to analytically study the evolution of coopera-
tion on arbitrary complex networks. We show that allowing a continuous rather than
discrete action space improves cooperation. Moreover, we investigate the influence
of structural network properties on the final outcome. In particular we compare the
small-world and scale-free network model, both of which exhibit properties that are
typically found in real-world social or technological networks. We then extend the
model to allow for external influence by which the network dynamics can be con-
trolled and we propose an iterative control algorithm that can drive the network to
any desired state while minimising the control effort.

Finally, in Chapter 6 we apply the evolutionary dynamical analysis to the complex
domain of automated trading in stock markets. By focusing on high-level trading
strategies rather than atomic actions we can use the replicator dynamics to analyse
the evolutionary strength of each strategy. In particular, we investigate the value of
information in stock markets under influence of both noise and cost, and find that more
information is not always better, in particular when that information is expensive or
uncertain. Moreover, we compare two trading strategies that are common to real stock
markets — chartists and fundamentalists — and investigate under which settings both
can be sustained in an evolutionary market.

The findings presented in this dissertation contribute to a better understanding of
the dynamics of learning in multi-agent systems. We have surveyed recent advances in
the intersection between evolutionary game theory and multi-agent learning, and have
subsequently used these methods to study cooperation through lenience in multi-agent
systems. We then extended the evolutionary framework to networked interactions
and investigated the evolution of cooperation in societies of self-interested decision
makers. Finally, we have applied the evolutionary framework to the study and analysis
of trading in stock markets, thereby showing the applicability of the framework to
complex multi-agent interactions and thus proving its value beyond the analysis of
stylised games.



Samenvatting

Binnen het vakgebied kunstmatige intelligentie worden eenheden die zelfstandig be-
slissingen kunnen nemen agenten genoemd. Wanneer meerdere agenten met elkaar
in interactie zijn binnen een gezamenlijke omgeving, spreken we van een multi-agent
systeem. Multi-agent systemen zijn uitermate geschikt om een scala aan complexe
problemen uit onze huidige maatschappij te modelleren. Denk bijvoorbeeld aan ge-
automatiseerde financiéle markten, slimme energienetwerken, en het regelen van
(lucht)verkeer. Elke individuele agent beinvloedt zijn omgeving door het nemen van
beslissingen en het uitvoeren van acties, waardoor indirect ook de acties van andere
agenten beinvloed worden. Dit leidt tot een zeer dynamische omgeving. Het schier
oneindig aantal situaties dat zo kan optreden maakt het onmogelijk om vooraf precies
te bepalen welk gedrag op elk moment optimaal is. Het is hierom van groot belang
dat agenten in staat zijn om te leren en zich aan te passen aan nieuwe situaties en om-
standigheden. Het onderzoeksgebied multi-agent learning houdt zich hiermee bezig.

Reinforcement learning heeft zich in de laatste twee decennia bewezen als een ro-
buuste en adaptieve leermethode voor multi-agent systemen. Er is substantiéle voor-
uitgang geboekt, en een verscheidenheid aan leeralgoritmen is nu beschikbaar. Een
belangrijke uitdaging binnen het gebied van multi-agent learning is om kwalitatief en
theoretisch inzicht te krijgen in de dynamiek van het leerproces, wat bemoeilijkt wordt
door de complexiteit die de interactie in multi-agent systemen met zich meebrengt.
Evolutionaire speltheorie biedt uitkomst, en is recentelijk omarmt als een veelbelovend
raamwerk waarbinnen multi-agent learning formeel bestudeerd kan worden. Deze be-
lofte rust op de bewezen connectie tussen het gedrag van eenvoudige leeralgoritmen,
zoals leerautomaten, en de replicator dynamics van de evolutionaire speltheorie. De
replicator dynamics voorspellen het verwachtte gedrag van lerende agenten in strate-
gische interacties die beschreven zijn in zogeheten normal-form games.

In dit proefschrift onderzoeken we de leerdynamiek van multi-agent systemen door
voort te borduren op het hiervoor beschreven evolutionair speltheoretisch raamwerk.
Het proefschrift omvat vier kernbijdragen die we hier kort samenvatten.

Allereerst geven we in Hoofdstuk 3 een overzicht van het evolutionair speltheore-
tisch raamwerk voor multi-agent learning, waarbij we de belangrijkste conclusies die
tot dusver zijn getrokken samenvatten. We beschrijven de formele relatie tussen de
replicator dynamics en leerautomaten in normal-form games, almede extensies van
de theorie naar complexere leeralgoritmen en omgevingen. We laten zien hoe een
dergelijke analyse tot nieuwe inzichten kan leiden waarbij twee ogenschijnlijk diverse
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groepen leeralgoritmen met elkaar verbonden worden.

Ten tweede laten we in Hoofdstuk 4 zien hoe lenience, vergelijkbaar met welwil-
lendheid, samenwerking mogelijk maakt in multi-agent systemen. Een lenient agent
negeert slechte resultaten als gevolg van miscoérdinatie die enkel voortkomt uit het
feit dat andere agenten eveneens nog aan het leren zijn. We presenteren lenient
frequency-adjusted Q-learning, onderzoeken de leerdynamica van dit nieuwe algoritme,
en vergelijken de convergentie-eigenschappen met enkele andere recente leeralgorit-
men. Experimenten in normal-form games en op grafen laten zien dat lenience inder-
daad codrdinatie verbetert in het bekende strategische scenario van de stag hunt.

Ten derde presenteren we in Hoofdstuk 5 een nieuw dynamisch model voor het
continuous-action iterated prisoner’s dilemma op grafen, gebaseerd op methodes uit
het onderzoeksgebied van de meet- en regeltechniek. Dit model stelt ons in staat om
de evolutie van samenwerking in complexe netwerken te analyseren. We laten zien
dat de continue actieruimte van dit model samenwerking bevordert ten opzichte van
een discrete actieruimte. Daarnaast onderzoeken we de invloed van structurele eigen-
schappen van het netwerk op de resulterende dynamiek. Vervolgens breiden we het
model uit om externe aansturing van het netwerk mogelijk te maken door individuele
knopen van het netwerk te beinvloeden. Tevens presenteren we een iteratief algoritme
dat in staat is om het netwerk naar een gewenste staat te sturen waarbij tegelijkertijd
de vereiste externe invloed wordt geminimaliseerd.

Tot slot passen we in Hoofdstuk 6 de evolutionair-dynamische analyse toe op het
complexe domein van geautomatiseerde aandeelhandel. Met behulp van heuristische
methodes kunnen we de replicator dynamics gebruiken om de evolutionaire sterkte
van complexe handelsstrategieén te analyseren. Specifiek onderzoeken we de waarde
van informatie in de aandelenhandel onder invloed van kosten en onzekerheid. We
concluderen dat meer informatie niet altijd leidt tot betere resultaten, met name wan-
neer informatie duur of onzeker is. Daarnaast vergelijken we twee strategieén die
veelvoorkomend zijn in echte aandelenmarkten en onderzoeken onder welke omstan-
digheden beide strategieén kunnen overleven in een evoluerende markt.

De bevindingen die we hebben gepresenteerd in dit proefschrift dragen bij aan
een beter begrip van de leerdynamiek van multi-agent systemen. We hebben een
overzicht geschetst van het evolutionair speltheoretisch raamwerk voor de studie van
multi-agent systemen, en vervolgens deze methodes en technieken toegepast bij het
bestuderen van coordinatie door middel van lenience. Hierna hebben we het raam-
werk uitgebreid naar interacties in grafen, en aan de hand daarvan samenwerking
in complexe netwerken bestudeerd. Tot slot hebben we de evolutionaire methode
gebruikt voor de analyse van aandeelhandel. Hiermee hebben we aangetoond dat
het raamwerk toepasbaar is op complexe multi-agent systemen, en daardoor ook van
waarde is buiten gestileerde speltheoretische interacties.
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