
Fairness in Multiplayer Ultimatum Games Through Moderate Responder
Selection

Fernando P. Santos1 and Daan Bloembergen2

1Department of Ecology and Evolutionary Biology, Princeton University, New Jersey, USA
fpsantos@princeton.edu

2Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
d.bloembergen@cwi.nl

Abstract

We study the evolution of fairness in a multiplayer version
of the classical Ultimatum Game in which a group of N Pro-
posers offers a division of resources to M Responders. In
general, the proposal is rejected if the (average) proposed of-
fer is lower than the (average) response threshold in the Re-
sponders group. A motivation for our work is the exchange
of flexibilities between smart energy communities, where the
surplus of one community can be offered to meet the demand
of a second community. In the absence of any Responder
selection criteria, the co-evolving populations of Proposers
and Responders converge to a state in which proposals and
acceptance thresholds are low, implying an unfair exchange
that favors Proposers. To circumvent this, we test different
rules which determine how Responders should be selected,
contingent on their declared acceptance thresholds. We find
that selecting moderate Responders optimizes overall fair-
ness. Selecting the lowest-demanding Responders maintains
unfairness, while selecting the highest-demanding individu-
als yields a worse outcome for all due to frequent rejected
proposals. These results provide a practical message for in-
stitutional design and the proposed model allows testing poli-
cies and emergent behaviors on the intersection between so-
cial choice theory, group bargaining, competition, and fair-
ness elicitation.

Introduction
Many social dilemmas in society can be formulated and
studied using game theoretic methods (Gintis, 2000). In
particular, the question how cooperation can come about
in a society of self-interested individuals has attracted con-
siderable interest in the research community (Axelrod and
Hamilton, 1981; Hofmann et al., 2011; Rand and Nowak,
2013; Ranjbar-Sahraei et al., 2014; Santos et al., 2018). Typ-
ically such social dilemmas are cast as a normal form game,
in which a set of players simultaneously and without prior
communication choose an action to play, and the resulting
joint action determines the payoff to each player. Despite the
simplicity of these one-shot interactions, normal form games
can still capture many of the intricate dynamics of complex
strategic interactions (Axelrod and Hamilton, 1981; Skyrms,
2004).

One example of such a game is the Ultimatum Game (UG)
(Güth et al., 1982), in which one player, the Proposer, offers
a certain split of a resource to a Responder, who decides
to accept or reject the offer. If accepted, the players re-
ceive their share per the offer; if rejected both players receive
nothing. We propose and study a Multiplayer version of the
classical Ultimatum Game, in which a group ofN Proposers
offers a division of resources to a group of M Responders.
Henceforth we refer to this interaction as NvM-person Ulti-
matum Game (NM-MUG). While a multiplayer version of
UG was previously discussed in the context of one Proposer
and N Responders (Santos et al., 2015, 2016, 2019), con-
sidering proposals by groups of Proposers is relevant in the
context of rival public goods division, where 1) Proposers
may be tempted to free-ride and lower their proposals ex-
pecting other Proposers to compensate and 2) the group sizes
of Proposers and Responders may not match, reducing the
per-capita share in one of the groups. In general, we assume
that a proposal is rejected if the (average) proposed offer is
lower than the (average) response threshold in the Respon-
ders group. We study under which conditions a fair outcome
is achieved, in which Proposers offer a substantial split to
the Responders. In particular, we study the mechanism by
which the Responders are selected from the population in
order to elicit the best deal.

The NM-MUG can be used to study social settings in
which groups of people wish to negotiate a deal. For exam-
ple, deals between companies or between national legisla-
tive bodies are often discussed by committees representing
each side, and as a result the selection of committee mem-
bers with specific individual strategies can have a great in-
fluence on the final result (Hagan et al., 2001). Multiplayer
versions of the Ultumatum Game are also played in the con-
text of group buying (Jing and Xie, 2011). A specific ex-
ample motivating our work are smart energy communities,
such as the Amsterdam pilot sites Schoonschip1 and De Ceu-
vel2, in which a number of households share a single point
of coupling with the national energy grid. Behind this point

1http://schoonschipamsterdam.org/en/
2https://www.jouliette.net/
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of coupling, the households can exchange energy flexibili-
ties (demand and supply) locally and thus more efficiently
(Chakraborty et al., 2018). The summed remaining flexibil-
ity of each community could be used in negotiation with a
different community, as a second layer of local or regional
energy exchange (Lezama et al., 2018). This suggests a mul-
tiplayer bargaining game between two groups (the Propos-
ing and Responding communities) which fits well within the
general layout of the NM-MUG.

We simulate this scenario by means of a co-evolutionary
process in which groups of Proposers and Responders are re-
peatedly selected from separate populations. The NM-MUG
is used to compute the resulting fitness of individuals in each
population, which then evolve following imitation dynamics
and mutation. When selecting randomly composed groups
of Proposers and Responders (that is, each individual has
an equal probability of being selected for the group of Pro-
posers or Responders), we find that the average offer of Pro-
posers and acceptance thresholds of Responders co-evolves
to an unfair state where Proposers get (almost) all the share.
From this baseline, it is possible to test mechanisms for se-
lecting the Responder groups, aiming to find arrangements
that equalize the average gains of both populations. This
model can thus lay out directions for future research in the
areas social choice, group bargaining, competition, and the
emergence of fairness in co-evolving communities.

Background and Related Work
The Ultimatum Game (UG) is a well-known interaction
paradigm, widely used to evince the conflict between pay-
off maximization and fairness — and the puzzling human
preference for the latter (Güth et al., 1982). As mentioned
in the previous section, in this game two players interact in
two distinct roles. One is called the Proposer and the other
is denominated Responder. The game is composed by two
sub-games, one played by each role. First, some amount of a
given resource, e.g. money, is conditionally endowed to the
Proposer; this agent must then suggest a division with the
Responder. Secondly, the Responder will accept or reject
the offer. The agents divide the money as it was proposed, if
the Responder accepts. By rejecting, none of them will get
anything. The strategy set of the Proposers comprises any
possible division of the resource. The strategies of the Re-
sponders are acceptance or rejection, contingent on the offer
made. Often, Responders’ strategies are assumed to be prob-
abilities of acceptance that are non-decreasing on the offer
made. Frequently it is assumed that any Responder decision
is codified in a threshold of acceptance: below this thresh-
old offers are rejected (i.e., accepted with probability 0) and
above the threshold offers are accepted with probability 1
(Page et al., 2000).

While the UG is a sequential game usually expressed
in extensive-form, by having Responders deciding on their
thresholds of acceptance in advance we can also formalize

this interaction as a normal-form game. In either case, the
rational behaviour in the UG can be anticipated using tra-
ditional game-theoretical equilibrium analysis. Of special
interest in this setting is the sub-game perfect equilibrium
(Osborne et al., 2004), which can be inferred by applying
the method of backward induction. The Responder, facing
the decision of rejecting (earn 0) or accepting (earn some
money, even if a really small quantity), would always prefer
to accept. Secure about this certain acceptance, the Proposer
will offer the minimum possible, maximizing her own share,
thus yielding the equilibrium in which both the offer and the
acceptance threshold are as close as possible to zero.

The UG is a 2-person game, however, many real-world
situations require bargaining within (and between) groups
of individuals. Here we focus on a multiplayer extension
of the ultimatum game in which a group of N Proposers
offers a division of resource to a group of M Responders
(NM-MUG). A previous formalization of Multiplayer Ulti-
matum Game (MUG), close to the one that we follow here,
was proposed by Santos et al. (2015). In that work, a sin-
gle Proposer makes an offer to a group of Responders. In-
dividually, each Responder in the group states acceptance
or rejection; the group of Responders as a whole accepts
the offer provided that a minimum number of acceptances
exist. A more recent study resorts to reinforcement learn-
ing (the Roth-Erev algorithm) to show that higher proposals
are likely to emerge when stricter group decision rules (re-
quiring more accepting Responders for group acceptance)
are considered (Santos et al., 2016), also in the context of 1
Proposer versus N Responders. An alternative multiplayer
(3-person) formulation of the UG was proposed by Takesue
et al. (2017). Also, in a seminal work, Fehr and Schmidt
(1999) explicitly considered the effect of competition be-
tween Proposers and Responders in a market game closely
related with the UG. In this game, either 1) a group of sell-
ers (Proposers) compete to sell one unit of a good to a buyer
(Responder); or one Proposer suggests an offer that leads
many Responders to compete against each other to accept it.
In these market games, subjects tend to adopt unfairer strate-
gies, differently to what happens with the 2-person UG and
as predicted by the rationality self-interest model.

Nevertheless, both in the 2-person and the multiplayer
ultimatum game, the predictions assuming perfect rational-
ity were challenged by experimental and theoretical works
(Fehr and Schmidt, 1999; de Jong and Tuyls, 2011; Santos
et al., 2019). Instead of resorting to equilibrium notions of
classical game theory to study the behavior of agents when
interacting in a multi-Proposer multi-Responder ultimatum
game, we adopt methods from population ecology, such as
evolutionary game theory (EGT). EGT has been used to
analyze strategic interactions in several domains such as
auctions (Phelps et al., 2004) or market dynamics (Bloem-
bergen et al., 2015) (as an example). In a social context,
EGT can describe individuals who revise their strategies



through social learning, being influenced by the behaviours
and achievements of others (Sigmund, 2010). One of the
most traditional tools to describe the dynamics of an evo-
lutionary game model is the replicator equation (Taylor and
Jonker, 1978). This equation, justified in a context of trait
evolution in biology or cultural evolution across human so-
cieties, assumes that populations are infinite and evolution
proceeds favouring strategies that offer a fitness higher than
the average fitness of the population. However, it has also
been argued that the replicator equation might not be an ac-
curate model of human behaviour, due to its assumption of
an infinite and well-mixed population, and that agent-based
models might be more appropriate to study the social dy-
namics of fairness (Alexander, 2000).

Given these considerations, here we analyze the NM-
MUG resorting to an agent-based model that similarly as-
sumes that strategies performing better than average are se-
lected over time. For that, we consider a pairwise compar-
ison rule (Traulsen et al., 2006). As will be clarified be-
low, we consider a finite population of agents. After play-
ing several rounds, agents revise their strategy by observing
a role-model agent, randomly picked from the population.
Imitation (i.e., copying the strategy used by the role-model)
occurs with a probability that grows with fitness difference:
strategies performing better have a higher probability of be-
ing imitated. Under certain limits (large population size and
low selection intensity) the replicator dynamics is recovered
in this process (Traulsen et al., 2006).

NvM-Person Ultimatum Game
Let us start by describing the NvM-person (i.e., multi-
Proposer, multi-Responder) Ultimatum Game, the interac-
tion paradigm used throughout this paper. In any given NM-
MUG interaction a group of Proposers makes an offer to a
group of Responders. The offer made by the group results
from a function of individual offers of Proposers in the group
(e.g., the average); this offer is accepted if it is higher than
a function of Responders’ individual acceptance thresholds
(e.g., if the offer is higher than the maximal threshold —
guaranteeing that every Responder in the groups is satisfied
— or if, again, the offer is higher than the Responders’ av-
erage threshold). In case of acceptance, each Proposer re-
ceives the share she did not offer, which stresses the social
dilemma in the Proposers’ group: individually, each one has
interest in offering the minimum possible but, in order to
prevent a rejection, it is beneficial for all to have the largest
possible collective offer.

In the context of smart energy communities, each group
can be seen as a possible community, while the selection
mechanism determines the attitude of its members. The pro-
posals and response thresholds can be thought of as some
combination of kWh and price, or the difference to the mar-
ket price, illustrating the potential gain from the interaction.

Formally, we model the NM-MUG by two populations

Proposer(s) Responder(s)

NM-MUG

ZP

N M

ZR

pi
qj

Figure 1: The NvM-person Ultimatum Game (NM-MUG).
Groups of N Proposers and M Responders are drawn from
a population of Proposers ZP and Responders ZR, respec-
tively. The groups’ joint proposal and threshold for accep-
tance determine the success of the interaction.

ZP and ZR, representing the Proposers and Responders, re-
spectively (see Figure 1). Each individual i in the popula-
tion of Proposers is defined by her personal proposal value
pi ∈ [0, 1], for i ∈ ZP . Similarly, Responders are defined
by their individual threshold of acceptance qj ∈ [0, 1], for
j ∈ ZR. At each iteration, a group of Proposers N ⊆ ZP
and Responders M ⊆ ZR is selected, following predefined
rules 3. These groups induce a joint proposal p̄ = P(N)
and joint Responder threshold q̄ = Q(M). In a simple
scenario (such as the one we will consider below) P and
Q are the average function, i.e. p̄ = |N |−1

∑
i∈N pi and

q̄ = |M |−1
∑
j∈M qj . The proposal is accepted iff p̄ ≥ q̄.

The question is now: how to select the groups of Proposers
and Responders from each population?

Base Scenario
In the base scenario, the Proposers, forming a group of fixed
size N , are selected randomly from Zp. The joint proposal
offered by the group is taken to be the average proposal of
individuals in the group, p̄ = |N |−1

∑
j∈N pj . The Re-

sponder group M is composed of those Responders that are
willing to accept p̄, such that j ∈M : qj ≤ p̄.

In this case, the Responders in M will have a payoff

URi = min(p̄, p̄
N

M
), (1)

whereas all Responders outside M earn 0. The min opera-
tor signifies that the Responders cannot jointly receive more
than what the Proposers offer, nor can one individual con-
sume more than a unit share. At the same time, Proposer i
taking part in the collective proposal by group N , offered to
the group of Responders M , will have a payoff of

UPi = min(1− pi, (1− pi)
M

N
), (2)

3To simplify notation, we use N and M interchangeably as the
group size of Proposers and Responders, respectively, as well as
groups of selected Proposers and Responders. When an explicit
distinction is necessary we use |N | and |M | to denote group sizes.



where pi is the proposal by individual i. Again, the min op-
erator ensures that Proposers cannot jointly offer more than
the Responders accept; unit offers that are not accepted are
lost in the context of the deal. This loosely reflects a typical
scenario in which flexibilities are exchanged between smart
energy communities (Lezama et al., 2018), where each indi-
vidual household has a maximum amount of flexibility it can
offer, and the total sum of flexibilities exchanged between
the communities should balance out in the deal.

Responder Competition Scenario
As we detail below (Section “Experiments and Results”) al-
lowing any individual i ∈ ZP to take part in the group of
Responders (those that will accept or reject the offer and
profit from it) has the pernicious effect of inducing a long-
term reduction in the average values of q adopted in the
Responders’ population which, in turn, incentives the Pro-
posers to lower their p and enact highly unfair offers. Many
institutional arrangements affecting the process of Respon-
der selection can be tested, departing from the base scenario
presented above. For now, we discuss the role of Respon-
der competition based on a declared threshold of acceptance
— partly inspired by Fehr and Schmidt (1999). While Pro-
posers are still randomly selected, we sort the Responders’
declared thresholds of acceptance, partitioning the Respon-
ders based on this ordering, and select for the group the in-
dividuals declaring the thresholds ranked from the mth to
the (m+M − 1)th ascending position. As an example of
extreme cases, m = 0 and M = 10 means that the 10 low-
est acceptance thresholds are selected and, in a population
of 100 Responders, m = 90 and M = 10 means that the 10
highest acceptance thresholds are selected.

In this case, assuming that |N | and |M | are fixed exter-
nally, proposals are accepted only whenever p̄ ≥ q̄, where
q̄ = |M |−1

∑
j∈M qj , and M is formed by the demands

qi which, after being sorted in an ascending order, stand in
the positions ranging from the mth to the (m + M − 1)th

position. We study the evolutionary trajectories of strategy
adoption when different rules for the selection of Respon-
ders are introduced (i.e., different m and M ).

Evolutionary Dynamics
In order to study the evolutionary dynamics associated with
each Responder selection rule (m and M ), we implement
an agent-based model in which individuals resort to social
learning to adapt their behavior over time (Algorithm 1). Ini-
tially, values of p and q characterizing each agent are sam-
pled from a uniform distribution. For a large number of gen-
erations, individuals will adapt their values of p and q. In
each generation, |ZP | + |ZR| individuals are sampled with
replacement, following a uniform probability; with a prob-
ability µ the selected individual will randomly explore the
strategy space, adopting a random value of p (if Proposer)
or q (if Responder). This is akin to a mutation in genetic

Algorithm 1: Pseudo-code of the main cycle of our sim-
ulations. Algorithm 2 sketches how fitness(·) is com-
puted.

Initialize all pi ∈ ZP , qi ∈ ZR = X ∼ U(0, 1)
for t← 1 to Gens do Main cycle of interaction and
strategy update:

for j ← 1 to ZP+ZR do Select agent to update:
if X ∼ U(0, 1) < ZP/(ZP+ZR) then Update

Proposer strategy:
/* Sample two agents from

Proposer population */
A← X ∼ U(1, ZP ) (agent to update)
B ← X ∼ U(1, ZP ) (model agent)

else Update Responder strategy:
/* Sample two agents from

Responder population */
A← X ∼ U(1, ZR) (agent to update)
B ← X ∼ U(1, ZR) (model agent)

if X ∼ U(0, 1) < µ then Mutation:
pA ← X ∼ U(0, 1)

else Imitation:
fA ← fitness(A)
fB ← fitness(B)
prob← 1/(1+e−β(fB−fA))
if X ∼ U(0, 1) < prob then

pA ← pB + imitation error ∼ U(−ε, ε)

evolution. With probability 1 − µ the selected individual A
will resort to imitation. In this case, a model agent B from
the same population is selected. The fitness of both agents
is calculated as the average payoff obtained in a large num-
ber of NM-MUG interactions (Algorithm 2).4 Imitation will
occur with a probability that follows the Fermi function for
pairwise comparison (Traulsen et al., 2006) such that

probA←B =
1(

1 + e−β(fB−fA)
)

where fA is the fitness of the imitator, fB is the fitness of the
model, and β is the so-called intensity of selection, control-
ling how dependent the imitation process is on agents’ fit-
ness values. When imitation occurs, the value of p or q char-
acterizing agent B will be adopted by agent A. The adopted
strategies are subject to a small perturbation: we add a value
between −ε and ε, sampled from a uniform probability dis-
tribution. We guarantee that pi, qj ∈ [0, 1],∀i, j, truncating
the adopted value if necessary.

4Note: while Proposers are drawn independently of their strat-
egy, Responders are selected based on their qi which is why we
need to take this into consideration in Algorithm 2.



Algorithm 2: Sketch of fitness computation of individual A
based on selection of M Proposers and N Responders.

Function fitness(A)
accumulatedF itness = 0;
for i← 1 to Samples do

if A ∈ ZP then Select Proposers including A:
Sample |N | − 1 other Proposers

else
Sample |N | Proposers

Select group of Responders M (for instance,
ordering their q values, ascending, and picking the
agents having the thresholds in the range mth to
(m+ |M | − 1)th

p̄ =
∑
j∈N

pj/|N |
q̄ =

∑
k∈M

qk/|M |
if p̄ ≥ q̄ then Proposal accepted:

if A ∈ ZR ∧A ∈M then Compute Responder
payoff:
fitness← URA (using Equation 1)

else Compute Proposer payoff:
fitness← UPA (using Equation 2)

accumulatedF itness += fitness

return accumulatedFitness/Samples

During the simulations, we record 1) the average strat-
egy used in the population of Proposers and Responders, 2)
the average acceptance rate of proposals, 3) the average fit-
ness of Proposers and Responders and 4) the time-series of
strategy adoption. We are particularly interested in under-
standing how strategy dynamics are impacted by different
Responder selection rules (i.e., different values of m and
M ). We report these results next.

Experiments and Results
We simulate the NM-MUG as described previously (Algo-
rithm 1) and present the results in the following. We average
over 100 runs of 20,000 generations each, and we use 100
samples for each fitness computation (Algorithm 2). We set
ZP = ZR = 100, µ = 0.001, ε = 0.01, and β = 10.

We are interested in the fairness of accepted deals which,
for simplicity, we here define as (expected) payoff equality
within and between the populations. For our scenarios, this
means that fairness between populations is achieved when

p̄ =
|M |

|M |+ |N |
(3)

such that proposers and responders on average receive the
same utility (by Equations 1 and 2). Fairness within popu-
lations is similarly achieved when all individuals share the
same expected utility, which in our scenario means that
pi = pj ,∀i, j ∈ ZP and qi = qj ,∀i, j ∈ ZR. While

more elaborate measures of fairness are possible (de Jong
and Tuyls, 2011), we leave these for future work and instead
focus on the role of Responder selection in this paper.

Base Scenario
After simulating the co-evolving dynamics of agents playing
the NM-MUG, and adapting their p and q strategies accord-
ingly, we realized that the base scenario, where all accepting
individuals are selected, nurtures long-term unfair divisions
between Proposers and Responders. We verified that the p
and q evolve, on average — taken over the whole popula-
tion(s), over 20,000 generations and over 100 runs — to val-
ues close to 0.01 and 0.1, respectively. This results in a large
proportion of rejected deals and, in case a deal is accepted, a
highly unfair (between populations) outcome. The same re-
sult is obtained when selecting randomly composed groups
of Responders with a fixed size M.

Responder Competition
We proceeded to test how competition for taking part in the
Responder group affects these dynamics. We measured the
average strategy usage, acceptance rate and fitness given a
range of values for the rank parameter m, yielding both ex-
treme (very low or very high m) and moderate (m ≈ ZR/2)
Responder groups.

As Figure 2a conveys, increasing m increases the average
values of p and q adopted by individuals in the long-run.
Notwithstanding, selecting strict Responders — that have
the highest values of q — is pernicious by leading to low
acceptance rates, as evidenced by Figure 2a (bottom panel).
Selecting groups that are characterized by the lowest values
of q (low m) is disadvantageous for the Responders popu-
lation as, over time, Proposers learn to offer extremely low
proposals. Selecting groups formed by the highest values
of q (high m) is equally harmful: due to the high fraction
of proposals being rejected, individuals are unable to ob-
tain high values of fitness. The optimal selection rule selects
those representatives with a value of q close to the popula-
tion median (i.e., m ≈ ZR/2), as evidenced in Figure 2b.
Note that this figure presents the relative average fitness as
a ratio with respect to the case m = 0. For example, when
m = 45 a Responder receives on average approximately 32
times more payoff compared to m = 0. Conversely, in this
case a Proposer earns slightly above 50% of what she would
receive for m = 0. Using this relative scale allows an eas-
ier comparison with the base (unfair) scenario m = 0. As
|N | = |M | in this case, a between populations fair outcome
is achieved whenever p̄ ≈ 0.5.

Changing m has a profound impact on the evolving dy-
namics of p and q, as shown in Figure 2c, where time-series
corresponding to exemplifying runs form = 30 (a),m = 45
(b), m = 50 (c), and m = 90 (d) are presented. We see a
clear difference between situation (a), with high acceptance
rates and low fairness, and (d), with almost arbitrary dynam-
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(a) The average p, population-q (taken over the whole population)
and group-q (taken over the selected groups of Responders). On the
bottom we show the average acceptance rate, which is representative
of the utilitarian social welfare in our scenario. Responder compe-
tition causes both values of p and q to increase when m increases
(top). However, too large values of m result in an increasing number
of rejected proposals (bottom).
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(b) The fitness of Responders is maximized when intermediate
groups of Responders (i.e., with the median values of q) are selected
to form Responders’ group. We represent the relative average fitness,
as a ratio taken over the base scenario m = 0.

0 5000 10000 15000 20000
0.0

0.2

0.4

0.6

0.8

1.0

a

0 5000 10000 15000 20000
0.0

0.2

0.4

0.6

0.8

1.0

0 5000 10000 15000 20000
0.0

0.2

0.4

0.6

0.8

1.0

0 5000 10000 15000 20000
0.0

0.2

0.4

0.6

0.8

1.0

b

c d

average p
average q

% accept

generation, tgeneration, t

(c) Example of time series for scenarios marked in panels (a) and (b).

Figure 2: Responder competition: Proposals are made by random groups of Proposers with size N = 10 and the group of
Responders (with size M = 10) is formed by the Responders with the mth to the (m+M − 1)th highest values of q.

ics due to the low acceptance rate and thus indiscriminate
fitnesses within the population. Situation (b), with (on av-
erage) median ranked Responder groups yields high accep-
tance rates while simultaneously maintaining fair (between
population) proposals. Interestingly, when the choice of qs
to form the Responder groups is dictated by m = 50 (c),
a cycling dynamic is often observed, representing periods
of fairness and unfairness that repeatedly succeed over time.
We extend the analyses of the average strategy used over
time by presenting, in Figure 3, the full distribution of pro-
posals (left) and acceptance thresholds (right) within those
populations for m = 45 (top) and m = 50 (bottom). We
find that the distribution of strategies is kept close to the
mean, thus suggesting high within-population levels of fair-
ness. In addition, we confirm that the cycles observed in
Figure 2c for m = 50 do not result from the populations

being divided in groups with different strategies that grow
and shrink alternatingly — instead all agents adopt a similar
strategy throughout.

Effect of Proposer Group Size
Finally, we investigate the effect of increasing the Proposers’
group size, N . As hypothesized, increasing N yields a
stricter social dilemma for the Proposers, akin to a public
goods game: individuals will maintain a low value of p,
expecting to maximize their share while hoping that others
propose an offer high enough to guarantee acceptance by the
Responders. As observed in Figure 4, this dilemma is more
pressing in larger Proposer groups, as the average p adopted
decreases with N . We also plot the between-population fair
proposal value (black dashed line). By increasing the Pro-
poser group size, the minimum proposal required to ensure
a fair offer is relaxed: for the same Responders’ group size



Figure 3: Distribution of strategies within the population for
scenarios b (top) and c (bottom) highlighted in Figure 2. We
find that agents adopt strategies that are close to the mean
in each population, which implies high levels of within-
population fairness.

(M ), increasing N means that, individually, each Proposer
is required to offer less, in order to maintain an even divi-
sion between all Proposers and Responders involved in the
transaction. In general, we find that fair proposals are easier
to obtain when M is low and m is high. The average offer
decreases whenever Proposers organize in larger groups.

Conclusion
In this paper we investigated the evolution of fairness within
a new multiplayer version of the Ultimatum Game, the NM-
MUG, in which a group of N Proposers offers a division of
resources to a group of M Responders. Agent-based simu-
lations showed that, in the absence of any Responder selec-
tion mechanism, the co-evolving populations of Proposers
and Responders converge to a state in which proposals and
acceptance thresholds are low, leading to unfair outcomes.
This effect is more pronounced when the Proposers’ groups
are larger. We then investigated different Responder selec-
tion rules, contingent on their declared acceptance thresh-
olds. We found that selecting extreme individuals is detri-
mental to the Responders’ long-term payoff: selecting the
lowest-demanding Responders incentives Proposers to do
low offers, while selecting the highest-demanding Respon-
ders leads to many rejected offers. Moderate groups — i.e.,
selecting Responders with acceptance thresholds close to the
population median — elicit the highest long-term gains for
the Responders population as a whole, with high levels of
fairness both between and within populations.

Figure 4: Effect of increasing Proposers’ group size N on
the average proposal level p̄. We plot p̄ for Responders’
group sizes M = 10 (top), M = 20 (middle), and M = 30
(bottom). Inside each panel, different Responders’ selection
rules (m) are plotted, moreover the black dashed line rep-
resents the between-populations fair proposal value (Equa-
tion 3), given the Proposers’ and Responders’ group sizes.

Although our model is based on several simplifying as-
sumptions, due to its generality we believe that our results
can nonetheless provide a practical message for institutional
design (Bullock, 2016), both in the context of regional flex-
ibility exchange between smart energy communities as well
as in the broader context of group bargaining. The proposed
model allows testing policies and emergent behaviors on the
intersection between social choice theory, group bargaining,
competition, and fairness elicitation.

We see many interesting avenues for further research
based on our findings. A variety of selection rules can be
envisioned and tested, for both the Responders as well as
for Proposers. In addition, the utility functions used can be
further tailored to specific real-world scenarios. Also, more
elaborate measures of fairness can be investigated and could



even be incorporated into the utility function directly (as in
e.g. de Jong and Tuyls 2011) or explicitly assuming traits
such as empathy (Szolnoki et al., 2012), yielding potentially
more complex and interesting dynamics. Finally, the effect
of different selection rules can be analyzed in the context of
spatially arranged individuals (Page et al., 2000; Szolnoki
et al., 2012) or assuming iterated (multiplayer) ultimatum
games (Ichinose and Sayama, 2014).
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